
ROUND TABLE 5: INDUSTRIAL SUPPORT FOR ENERGY TRANSITION

João da Silva Gonçalves

INB

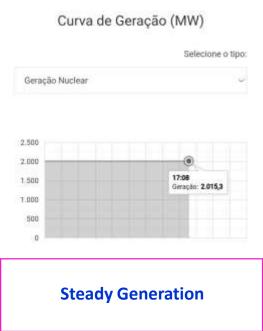
NUCLEAR FUEL CYCLE

SOURCE:

POWER DENSITY?

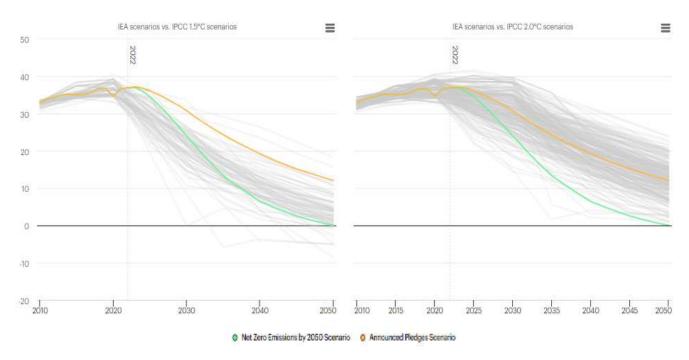
1KG		10t		20t
NATURAL URANIUM	=	CRUDE OIL	II	COAL

INDUSTRIAL SUPPORT TO JOINT TO!



INDUSTRIAL SUPPORT TO JOINT TO!

Source: AIEA / ONS



Unstable and Fickle Generation

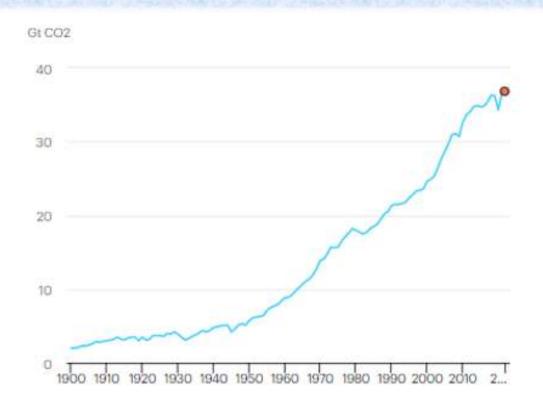
STRAIGHT TO THE POINT!

Gt CO2

Intergovernmental Panel on Climate Change (IPCC)

IEA. Licence: CC BY 4.0

COP 28 – UAE DUBAI DECEMBER 2023



The COP28, the UN climate conference, ended in Wednesday (13/12) in Dubai, in the United Arab Emirates, place an agreement that proposes for the first time the "transition towards the end of fossil fuels". The text requires countries to change their energy systems "in a fair, orderly and equitable manner".

The document also urges the convention's 198 member countries to "accelerate action in this critical decade to achieve carbon neutrality by 2050, according to science".

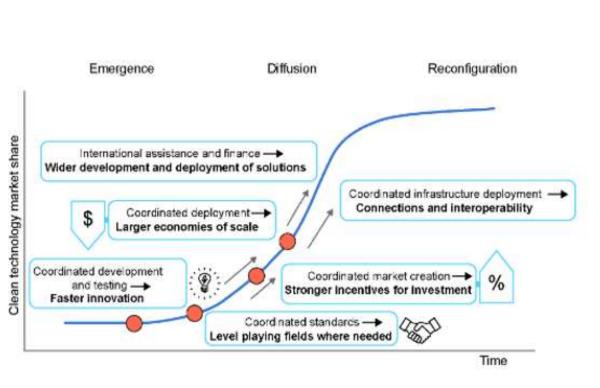
Plenaria final da COP28, em Dubai, nos Emírados Árabes Unidos. Foto: Christopher Pike/UNFCCC

CO₂ Emissions in 2022: Growth in Emission

Global CO₂ emissions from energy combustion and industrial processes, 1900-2022

https://www.iea.org/topics/global-energy-transitions-stocktake

"...global growth in emissions was lower than feared, despite gas-to-coal switching in many countries. ..."


Global energy-related CO₂ emissions grew by 0.9% or 321 Mt in 2022, reaching a new high of over 36.8 Gt.

Emissions from energy combustion increased by 423 Mt, while emissions from industrial processes decreased by 102 Mt.

Increased deployment of clean energy technologies such as renewables, electric vehicles, and heat pumps helped prevent an additional 550 Mt in CO₂ emissions.

WHAT'S NEEDED!

https://www.iea.org/topics/global-energy-transitions-stocktake

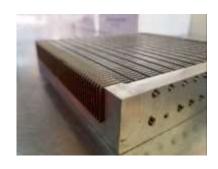
"...Stronger international cooperation in high emissions sectors crucial to get on track for 1.5C climate goal

In the past year, only modest progress has been made in strengthening international collaboration in the areas where it is most needed.

But much more progress is needed in aligning policies to create demand for technologies, clean and establishing dialogue on trade sectors where this is likely to be critical to the transition.

Nickel 5Y Historical data

https://tradingeconomics.com/commodity


Work to install Rooppur 1's core barrel was completed in May 2023 (Image: Rosatom)

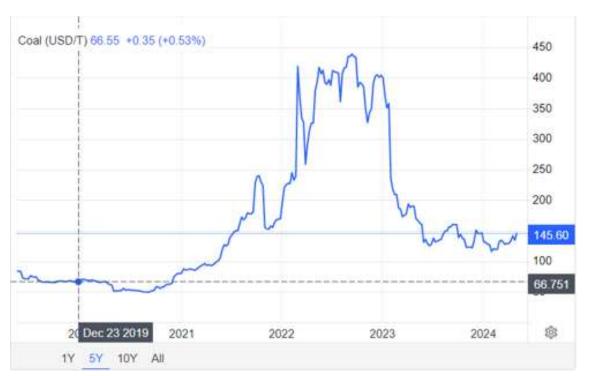
10

Programa Nacionalização INB

Programa Nacionalização INB

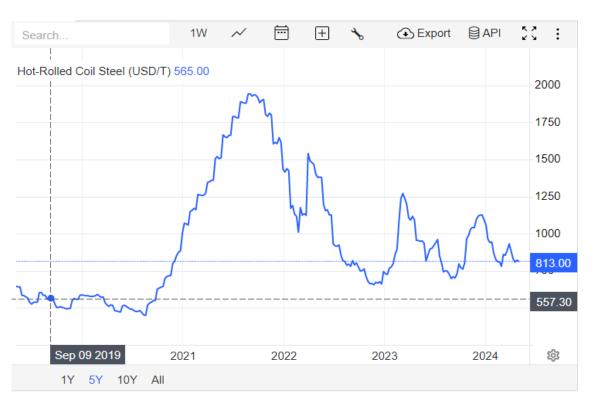
Tiras simples

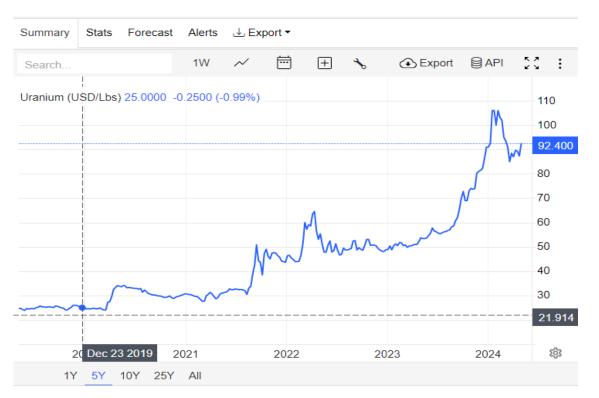
Tiras duplas



Grade

Programa Nacionalização INB





- **Exploration Project**
- Project under development

INB

- ★ Operations
- ▲ Depleted Mine

(ref: internal INB reports)

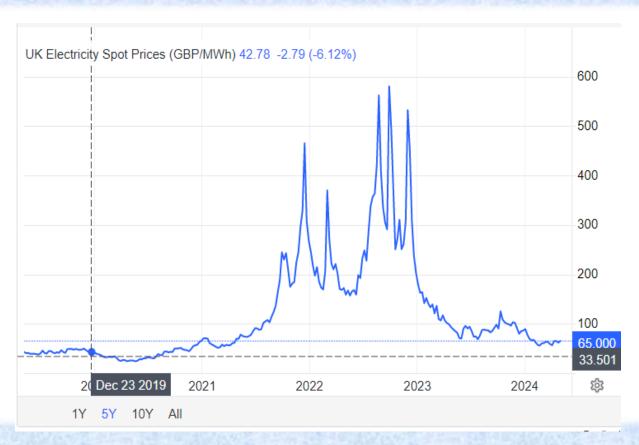
Resources and Potential of Mineralization

	Tonnes of U ₃ O ₈				
Deposits	Measured & Indicated	Inferred	Total		
Caetité	51,520	35,569	87,089		
Santa Quitéria	75,010	4,614	79,624		
Others	39,500	26,600	66,100		
TOTAL	166,030	66,783	232,813		

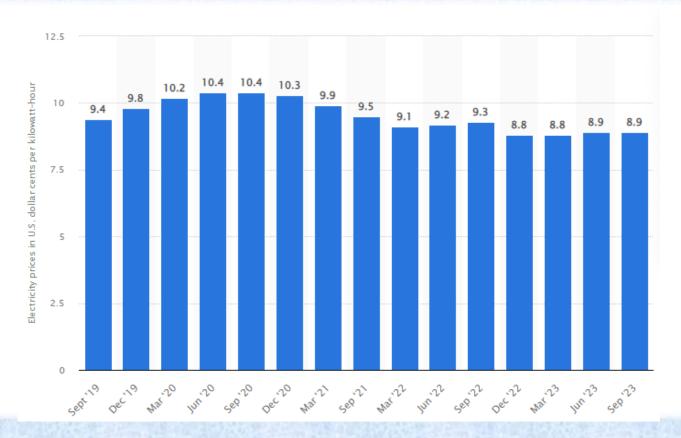
Potential of Mineralization: Pitinga/AM

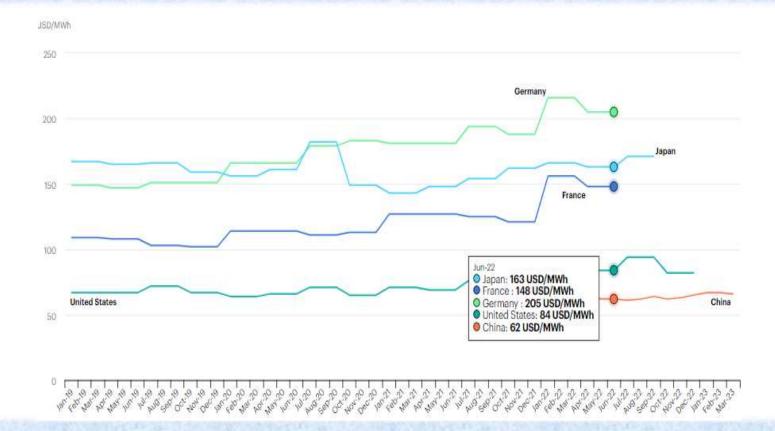
150,000 t U₃O₈

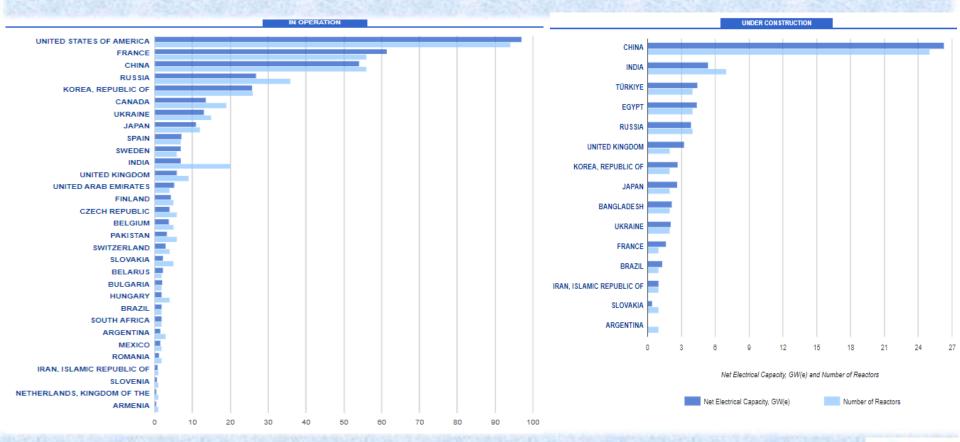
Rio Cristalino/PA 150,000 t U₃O₈

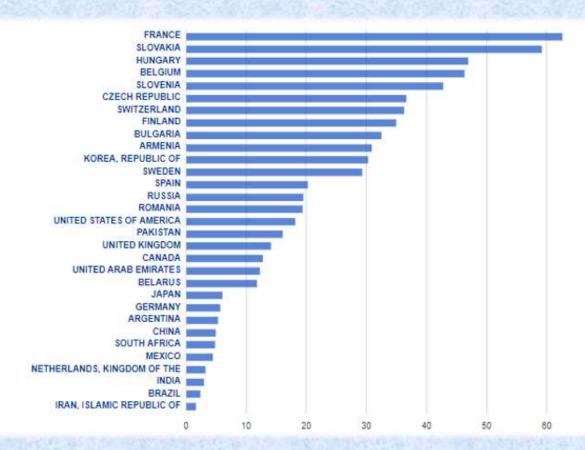


https://tradingeconomics.com/commodity

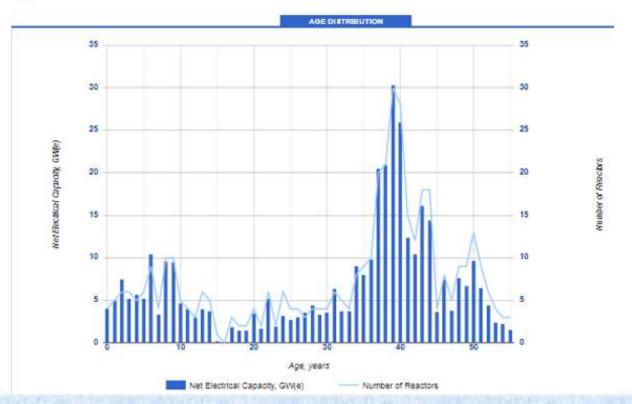


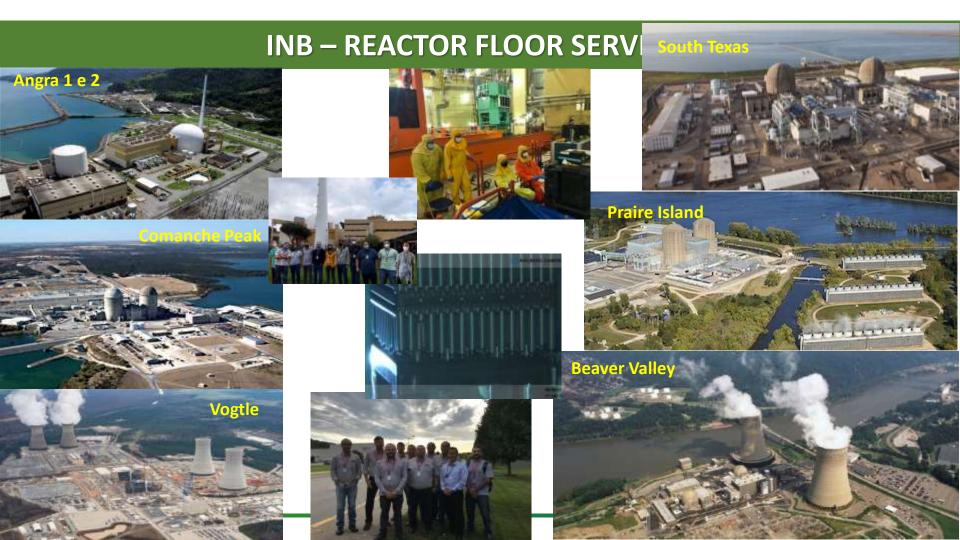

https://tradingeconomics.com/commodity




REACTORS FLEET

24


NUCLEAR SHARE



NUCLEAR SHARE

Age Distribution

INB – ICL SERVICES

For the week ending May 3, 2024

Nuclear Market

The source for uranium prices & analysis since 1968

The Market

MarketWatch

Weekly U2O₀Spot Price Indicator* \$92.15 (1 Up \$4.80)

Daily U2Oo Spot Price Indicator* \$92.15 (LDwn \$0.35)

Mid-Term U₂O₀ Price Indicator* \$95.00 (04/30/24)

Long-Term U₂O₀ Price Indicator* \$80.00 (04/30/24)

Production Cost Indicator* \$56.90 (04/30/24)

*US\$perpoundU2Osequivalent

The Market This Week...

- · Fifteen transactions in the spot uranium market.
- · No transactions and no new demand in the term uranium market.
- No transactions and new demand in the conversion market.
- No transactions and new demand in the enrichment market.

Uranium

The past week saw a dramatic shift in the nuclear fuel market with the US Senate passing by unanimous vote the Prohibiting Russian Uranium Imports Act (H.R. 1042) on Tuesday, April 30 (in Focus, p.5).

The Act will bar imports of Russian nuclear fuel into the USA 90 days after enactment once President Joe Biden signs it into law. It does allow temporary waivers under certain circumstances, which include: 1) no alternative viable source of low-enriched uranium is available to sustain the continued operation of a nuclear reactor or a US nuclear energy company, or 2) importation of the uranium is in the national interest. Any waiver must terminate by January 1, 2028. The ban ceases on December 31, 2040.

Upon announcement that the Senate had passed the bill, the spot uranium price increased bv\$2.00-from \$90.00 to \$92.00 per pound U2O1-with four transactions closing at that level. Sellers continued to increase their offer prices the following day with prices moving to \$92,50 on May 2.

Today, two transactions were concluded at \$92.50 per pound U30s; one earlier in the day and one an hour prior to the close of business. Within the last 30 minutes of business, one seller

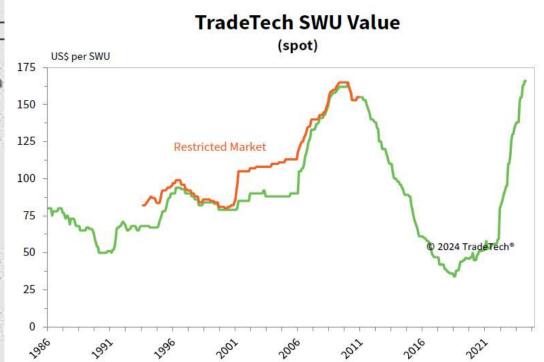
URANIUM MARKET

Uranium

The past week saw a dramatic shift in the nuclear fuel market with the US Senate passing by unanimous vote the Prohibiting Russian Uranium Imports Act (H.R. 1042) on Tuesday, April 30 (In Focus, p.5).

The Act will bar imports of Russian nuclear fuel into the USA 90 days after enactment once President Joe Biden signs it into law. It does allow temporary waivers under certain circumstances, which include: 1) no alternative viable source of low-enriched uranium is available to sustain the continued operation of a nuclear reactor or a US nuclear energy company, or 2) importation of the uranium is in

the national interest. Any waiver must terminate by January 1, 2028. The ban ceases on December 31, 2040.


Upon announcement that the Senate had passed the bill, the spot uranium price increased by \$2.00-from \$90.00 to \$92.00 per pound U₃O₈—with four transactions closing at that level. Sellers continued to increase their offer prices the following day with prices moving to \$92.50 on May 2.

Today, two transactions were concluded at \$92.50 per pound U3Os; one earlier in the day and one an hour prior to the close of business. Within the last 30 minutes of business, one seller

URANIUM MARKET

	04/30/24	Units
NUEXCO* Exchange Value	\$90.00	US\$/IbU3O8
UFs Value	\$295.00	US\$/kgUasUFe
Loan Rate	5.60	Percent/annum
Conversion Value		
- North American	\$59.00	US\$/kgUasUF6
- European	\$59.00	US\$/kgUasUFc
SWU Value	\$166.00	US\$/SWU
Transaction Value	\$93.95	US\$/IbUaOa
Mid-Term U3Os Price Indicator	\$95.00	US\$/IbU3O8
Long-Term U3O8PriceIndicator	580.00	US\$/IbU3O8
Production Cost Indicator	\$56.90	US\$/IbU3O8
Mid-Term Conversion Price Indic	ator	
- North American	\$55.00	US\$/kgUasUFc
- European	\$55.00	US\$/kgUasUF&
Long-Term Conversion Price Indi	cator	
- North American	\$36.00	US\$/kgUasUF6
- European	\$36.00	US\$/kgUasUF&
Mid-Term SWU Price Indicator	\$166.00	US\$/SWU
Long-Term SWU Price Indicator	\$158.00	US\$/SWU

May, 3 2024

BACK TO THE BUSINESS 1!

Source: Siemens energy

"The energy industry has the ability to develop the technologies for a future net-zero energy system. But we need to move from rhetoric to action."

Christian Bruch

CEO Siemens Energy

1- Expanding renewables (clean?)

[...the use of renewable energies must be massively increased worldwide. ...]

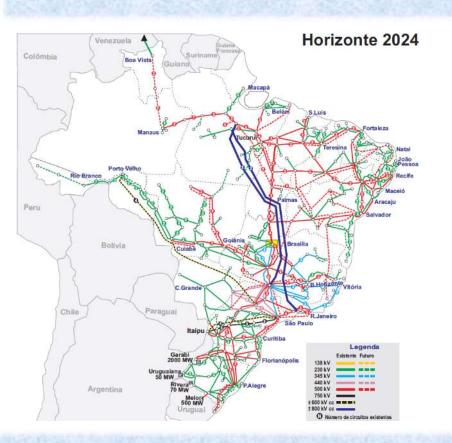
2- Transforming conventional power (SMR?)

...we cannot and should not overlook the infrastructure that already exists. This can and should be used as a bridge to carry out the transition. ...]

3- Strengthening electrical grids

[...The increasing share of renewables and increasing electrification require larger, more robust grids that can handle the fluctuations of this type of energy. ...]

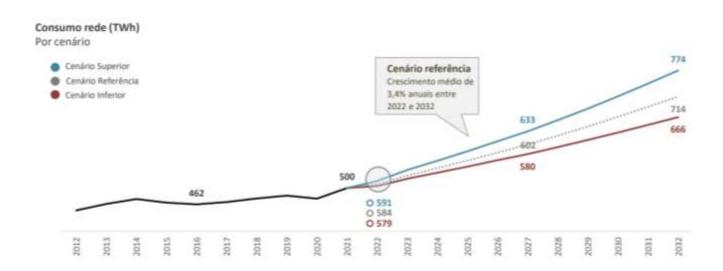
4- Driving industrial decarbonization


[to conserve energy wherever possible! Efficiency?]

5- Securing the supply chain and necessary minerals

[More materials and minerals are needed for the energy transition. ...]

BACK TO THE BUSINESS 2!



ONS

BACK TO THE BUSINESS!

PDE 2032 | Como evolui o consumo de eletricidade na rede?

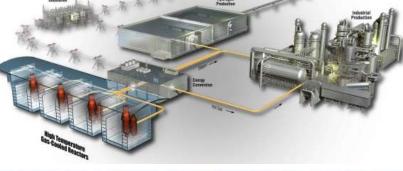
O consumo de eletricidade na rede cresce à taxa média de 3,4% ao ano no cenário de referência, enquanto no cenário superior o crescimento anual é de 4,1% e no cenário inferior de 2,8%.

Plano Decenal de Expansão de Energia 2032 | 7

IS THE NUCLEAR TECHNOLOGY AND DESIGN REALLY SAFE?

IS THE NUCLEAR TECHNOLOGY AND DESIGN REALLY SAFE?

BACK TO THE BUSINESS 4!

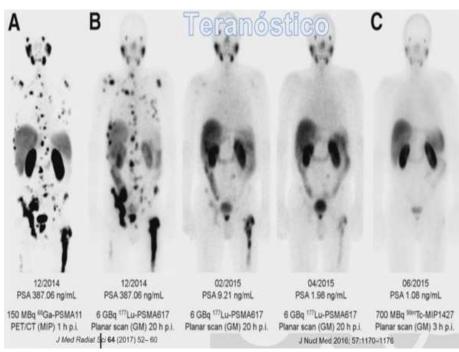


Nuclear Energy

NGNP / HTSE Conceptual Design

NGNP Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis

- Direct coupled to HTGR reactor for electrical power and process heat
- 600 MWth reactor could produce ~85 million SCFD hydrogen (similar to a large steam methane reforming plant) and 42 million SCFD oxygen
- Potential applications include petroleum refining, ammonia production, synthetic liquid fuels, hydrogen as a direct vehicle fuel



INB – USICON AND UCEU PROJECTS – MASTER PLAN

CHANGE OUR MINDS!

"...Stronger international cooperation in high emissions sectors crucial to get on track for 1.5°C climate goal ...".

ROUND TABLE 5: INDUSTRIAL SUPPORT FOR ENERGY TRANSITION

João da Silva Gonçalves

INB

THANK YOU!

JOAOGONCALVES@INB.GOV.BR

