

ANNUAL SYMPOSIA OF THE LATIN AMERICAN SECTION OF THE AMERICAN NUCLEAR SOCIETY

LAS/ANS - 2023

ROUND TABLE 1: FUEL CYCLE AND THE ENVIRONMENT

BRAZILIAN NUCLEAR PROGRAM NEAR FUTURE OPPORTUNITIES

MÁRCIO ADRIANO COELHO DA SILVA

NUCLEAR FUEL PRODUCTION INDÚSTRIAS NUCLEARES DO BRASIL - INB

BUENOS AIRES, AUGUST 23TH, 2023

Nuclear energy is key to achieving the global targets for reducing CO₂ emissions, working in partnership with renewable energy sources, as part of a sustainable energy system to decarbonize the worldwide electrical matrix.

Source: - World Energy Outlook 2022. IEA. International Energy Agency. Website: <u>www.iea.org</u> - Nuclear Energy for a Net Zero World. IAEA.

ENERGY MATRIX - BRAZIL AND WORLD

Matriz Energética Brasileira 2021

(BEN, 2022; total: 302 milhões de tep tonelada-equivalente de petróleo)

Matriz Energética Mundial 2020

(IEA, 2022; total: 585 milhões de TJ - terajoule)

ELECTRIC MATRIX - BRAZIL AND WORLD

BRAZIL: Electric Consumption and GDP per Capita - Forecast

Source: Plano Nacional de Energia 2050 / Ministério de Minas e Energia. Empresa de Pesquisa Energética. Brasília: MME/EPE, 2020

NUCLEAR REACTORS TECHNOLOGY EVOLUTION ELECTRIC POWER GENERATION

FCN – FUEL ASSEMBLY FACILITY

- Public Company
 Brazilian Ministry of Mines and Energy MME
- Operates the state monopoly on Nuclear Fuel Cycle activities in Brazil
- Products and Services on the Nuclear Fuel Cycle

BRAZILIAN REGULATORY AUTHORITY - CNEN

INB Activities on Nuclear Fuel Cycle

URANIUM MINING (INB- Caetité/BA)

	Tons of U ₃ O ₈			
Deposits	Measurements/ Indicated	Inferred	Total	
Caetité / Lagoa Real	94.000	6.700	100.770	
Santa Quitéria	91.200	51.300	142.500	
Others	39.500	26.600	66.100	
TOTAL	224.700	84.670	309.370*	
PROGNOSTICATED: Pitinga (AM): 150.000 Rio Cristalino (PA): 150.000				
SPECULATIVE: 500.000				

Santa Quitéria Project, Ceará

- **Mineral Resource:**
- Fosfate + Uranium

Consórcio Santa Quitéria

Estimated Net Capacity (Foreseen 2026)

Phosforic Acid:

Uranium:

200.000 t /ano

2.300 t /ano (as Yellowcake)

INB – CONVERSION PLANT (USICON)

UF₆

Cilindro 48Y

INB – USICON AND UCEU PROJECTS – MASTER PLAN

INB – ENRICHMENT PROGRAM

INB – ENRICHMENT PROGRAM

- Modular Construction at INB site
- Ultracentrifuge: Navy Technology from CTMSP - Centro Tecnológico da Marinha at São Paulo city.
- In Operation: 10 Cascades in 4 Modules.

Concluded in 2023: 1st phase 70 t UTS/y. 10 Cascades in 4 Modules. ~ 70% Angra 1 needs.

 Target 2nd phase 500 t UTS/y by 2035 100% Angra 1, 2 and 3 needs.

INB – ENRICHMENT, POWDER AND PELLET PRODUCTION

URANIUM POWDER PRODUCTION (RECONVERSION)

Nominal Capacity: 160 t / y UO₂

URANIUM POWDER PRODUCTION (RECONVERSION)

URANIUM PELLET PRODUCTION

Nominal Capacity: 120 t / y UO₂

22

URANIUM PELLET PRODUCTION

FUEL ASSEMBLY PRODUCTION

FUEL ASSEMBLY COMPONENTS

CERTIFICATIONS

NUCLEAR FUEL PRODUCTION (DPN)

INB INTERNATIONAL ENGINEERING SERVICES

Engineering services for PWR Plants - Sub supplier of Westinghouse

<u> Plantas PWR - EUA:</u>

- 1 Palo Verde 2 – D. C. Cook
- 2 D. C. Cook 3 – Salem
 - Prairie Island
- Byron

Δ

5

6

- Braidwood
- 7 South Texas
- 8 Comanche Peak
- 9 Vogtle
- 10 V. C. Summer
- 11 Turkey Point
- 12 Beaver Valley
- 13 Farley
- 14 Diablo Canyon
- 15 Indian Point
- 16 Callaway
- 17 Millstone
- 18 Ginna
- 19 Seabrook

Plantas PWR – Outros Países:

21 – Maanshan (Taiwan)

22 – Tihange 2 (Bélgica)

24 – Temelín (República

(África do Sul)

23 – Doel 3 (Bélgica)

Tcheca)

25 – Koeberg

20 – Krsko (Eslovênia)

FUEL SERVICES

- Fresh Fuel receipt and storage
- Fuel handling Core loading /unloading
- Fuel Repair
- Fuel Inspection (PSE)
- Control Rods Drive Shaft uncoupling and coupling
- Sipping Can
- Debris Removal

INB – REACTOR FLOOR SERV

INB – ICL SERVICES

NUCLEAR POWER PLANTS ANGRA 1, 2 e 3

ANGRA 3 CONSTRUTION

LABGENE PROJECT – FUEL PRODUCTION

➢ Pellet - done

- Fuel mechanical components 10 % done
- ➢ INB Fuel Assembly Plant preparation − Starting 2024
- First Fuel transport scheduled for MAR/2028 [preliminary target]
- > Criticality to be defined by Brazilian Navy Research Institute (CTMSP)

Nuclear Fuel Brazilian Scenario

- INB has intention to make part of international fuel cycle market (uranium first)
- Initially to meet internal demand

Time Line	Demands	Fuel Fabrication
Actually	•CNAAA •CTMSP	 Angra 1 + Angra 2 + Angra 3 first core LABGENE (Navy Technology Center - SP)
•As of 2028	•CNAAA	•Angra 1 + Angra 2 + Angra 3 (Fuel Reloads)
•By 2032	•CNAAA	•Angra 1 + Angra 2 + Angra 3 + NPP 4
(PNE 2032)	New site	•RMB (Brazilian Multipurpose Reactor)
•By 2050	•CNAAA	•Angra 1 + Angra 2 + Angra 3 + NPP 4 + NPP 5 + NPP 6
(PNE 2050)	 New Site(s) 	Small Modular Reactors

Internal Demand for Uranium and Fuels

- Angra 1 (PWR 640 MW) e Angra 2 (PWR 1.350 MW) = under operation
- Angra 3 (PWR 1.405 MW) = under construction (commercial operation: 2027)

Scenario 1	Scenario 2	INB - Capacity
Demand	Demand	
Angra 1/2	Angra 1/2/3	(Current)
(actual)	(2027)	

Yellow-cake U ₃ O ₈	t U ₃ O ₈	400	700	200
Conversion to UF ₆	t UF ₆	390	620	Service hired abroad
Enrichment	t SWU	280	460	70
UO ₂ Powder	t UO ₂	45	70	160
UO ₂ Pellets	t UO ₂	45	70	120
Fuel Assembly	units	100	150	500

Internal Demand for Uranium and Fuels

- PNE 2050 insertion of 8 GW to 10 GW nuclear
- Equivalent to 6 times Angra 3 (1.4 GW) = 8.4 GW

		Scenario 2 Demand Angra 1/2/3 (2027)	Scenario 3 Demand + 8 - 10 GW (2050)	Scenario 2 + 3 Demand (2050)	INB - Capacity (long time)
Yellow-cake U ₃ O ₈	t U ₃ O ₈	700	+ 1.700	2.400	800 + 2.300 = 3.100
Conversion to UF ₆	t UF ₆	620	+ 1.400	2.000	Localization
Enrichment	t SWU	460	+ 1040	1.500	500
UO ₂ Powder	t UO ₂	70	+ 150	220	160
UO ₂ Pellets	t UO ₂	70	+ 150	220	120
Fuel Assembly	units	150	+ 280	420	500
			Scenario	o Transition (10 t	o 30 years)

Nuclear Fuel Production Technologic Capability

- ATF (Accident Tolerant Fuel)
- LABGENE (48 MW_{th})
 - Contract between INB and CTMSP to produce 25 Nuclear Fuels
- SMR
 - MOU between INB and Holtec International (Develop and produce fuel for the SMR-160 in Brazil)
 - Complementary capabilities of INB, Navy Technology Center and Federal Institutes for HALEU production
 - INB: Uranium mining, Uranium enrichment (up to 5% U235), commercial and logistic experience on international services acquisition, nuclear material transportation and national authorities permissions obtaining process
 - Navy Technology Center (CTMSP): Uranium enrichment up to 20% U235
 - CNEN/IPEN Institute: U metal and oxide production, nuclear fuel manufacturing for SMR, research and medical isotopes reactors

Nuclear Fuel Production Technologic Capability

- Fully licensed and safeguarded installations
- Ready availability of main supply chain facilities (with exception of UF6 conversion)

RMB (Brazilian Multipurpose Reactor)

 Brazilian nuclear industry, Navy Technology Center and Federal Institutes jointly production (HALEU)

Thorium Fuel

• Three times more abundant in Earth than Uranium

India	846 500	No data available from China and Russia
Brazil	632 000	Source: IAEA- TECDOC-1877
USA	595 000	

DICCECT TUODILIM DECOLIDCEC

- Intrinsic proliferation resistance of thorium fuel cycle due to lower Plutonium production
- Not for now Necessary more research and developments

Investments on Nuclear Fuel Cycle - Mining

- Uranium concentrate production Caetité
 - Current Capacity: 200 t/y U₃O₈
 - Chemical Plant Expansion
 - Underground mine project

(for 800 t U₃O₈/year) (Cachoeiras mine)

Santa Quiteria Project – Uranium and phosphate

- Expectation: 2.300 t U3O8/year (2026)
- Geological research for new deposits
 - Caetité (BA), Rio Cristalino (PA), Pitinga (AM), others

Investments on Nuclear Fuel Cycle - Enrichment

• Ultracentrifuge Technology Developed in Brazil by CTMSP

December 2022:

- First Phase completed \rightarrow 70 t SWU/year (70% Supply of Angra 1 needs)
- 10 Cascades in 4 Modules

Future

- Ultracentrifuge Fabrication Expansion
- Second Phase \rightarrow 500 t SWU/year (100% Angra 1, 2 e 3)
- 30+ Cascades in 10 Modules (about 15 years)

Investments on Nuclear Fuel Cycle - Fuel Conversion

- Commercial \rightarrow 5% of total fabrication cycle
- International market saturation by 2035
- INB USICON → Conceptual bases
- INB and CTMSP cooperation on USEXA pilot plant

Planning and Challengers on Nuclear Fuel Production

Planning and Challengers on Nuclear Fuel Production

Planning and Challengers on Nuclear Fuel Production

HALEU And SMR Fuels And SMR Fuels

BRAZILIAN NUCLEAR PROGRAM NEAR FUTURE OPPORTUNITIES

