

Nuclear Technologies Contributing to Sustainability LAS-ANS Symposium 2022 Nuclear Technologies in Industry

Wilson Aparecido Parejo Calvo

Nuclear and Energy Research Institute National Nuclear Energy Commission - Brazil IPEN/CNEN

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÕES

21st June, 2022

APPLICATIONS OF RADIATION AND RADIOISOTOPES TECHNIQUES IN INDUSTRY

GAMMA RAYS AND ELECTRON BEAM TECHNOLOGY APPLICATIONS

Source: Texas A&M University

Mexico

 Nissin High Voltage, 500ke// Guatemala
 El Salvador
 2 Titan Corporation, 10Mev
 Ecuador
 ELU-6U, 6 – 10Mev

Cuba

Haiti

Irradiation facilities in Latina America and the Caribbean

Radioactive Facilities	Latina America Caribbean	Brazil	Japan	USA	China	World	Paragua
GAMMA IRRADIATORS (100 kCi - 10 MCi)	> 14	> 7	> 8	> 30	> 80	> 300	Chile
ELECTRON BEAM ACCELERATORS (100 keV - 10 MeV)	> 30	> 20	> 300	> 500	> 140	> 1600	

<u>www-naweb.iaea.org/napc/iachem/home.html</u>

Brazil

≻10MeV, 15kW

Puerto Rico

20 Electron Bea Accelerators

(100keV – 10Me)

Uruguay

Chile Argentina

Bolivia

Dominican Republic

Fitan Corporation, 10MeV

EL Surbeam/Varian, 650keV

Venezuela

Peru

GAMMA IRRADIATOR (PALLET CONVEYOR)

Brazilian Technology (3MCi)

Source: Sterigenics

GAMMA RAYS, ELECTRON BEAM AND X-RAYS

Safety Design, Construction and Operation

- 1. International Basic Safety Standards (BSS)
 - Protection against Ionizing Radiation
 - Safety of Radiation Sources
- 2. <u>IAEA Safety Standards</u> and Lessons Learned from Accidents in Industrial Irradiation Facilities
- 3. <u>CNEN Safety Standards</u> of the National Nuclear Energy Commission – Brazil
- 4. <u>AAMI/ISO 11137</u> Sterilization of Health Care Products – Requirements for Validation and Routine Control – Radiation Sterilization

IAEA Safety Standards for protecting people and the environment

Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities

Specific Safety Guide No. SSG-8

Source: IPFN/CNFN

Nuclear Technologies Contributing to Sustainability

AGRICULTURE

Food Irradiation Treatment of Seeds

FOOD IRRADIATION

Current Production Volumes of Irradiated Food Stuffs

Region	Volumes (Metric tons)	Market Condition		
USA	175,000	Flat		
EU	198,000	Declining		
Asia	450,000	Increasing		

Source: L3

92% of food stuffs are treated with Cobalt-60. Only 8% is represented by E-beam

Latina America and Caribbean > 100,000 tons/year

Food industry are looking for EB or X-ray machines:

- Lower capital cost
- Reliable
- Simple enough to operate
- Lower cost of operation
- Compact enough to integrate in existing
- Production in-line or a packing house space

Spices

Medicinal herbs

Mango (Mexico)

FOOD IRRADIATION (X-RAYS AND PALLET CONVEYOR)

Source: IBA/AERIAL

ELECTRON TREATMENT OF SEEDS

IPEN/Fraunhofer

Memorandum of understanding (MoU)

Mobile treatment plant

- ✓ Continuous treatment on air
- ✓ Throughput: 30 t/h
- ✓ 2 line emitting sources (150keV/30kW)

- Penetration of episperm by electrons with precise depth control
- Embryo keeps untouched

Source: Fraunhofer Institut-FEP (Seed-Health@fep.fraunhofer.de)

Nuclear Technologies Contributing to Sustainability

<u>INDUSTRY</u>

Material Modification Sterilization of Healthcare Products Printing and Curing Cultural Heritage

ELECTRON BEAM TECHNOLOGY APPLICATIONS

no Peroxides less energy

better properties less / no additives

no UV-Initiators less energy

better properties

STERILIZATION OF HEALTHCARE PRODUCTS

Sterilized Medical Devices: 135.000 m³/year

Source: Sterigenics

E-BEAM PRINTING AND CURING

e⁵ efficient enabling economical energy savings vironmental friend

- Integrated shield roll design
 - With sealed e-beam Emitter

Features

- Energy: 80kV to 180kV
- Web width: 360mm
- Web speed 90m/min at 25kGy
- Pilot / development lines
 - Narrow web printing presses
- Presses for shrink sleeve labels

no VOC (like thermal)

- no Photoinitiators (like UV)
- low substrate heating
- electrons are "colorblind"
- higher speed

Sources: RadTech and COMET Ebeam

RADIATION PROCESSING OF CULTURAL HERITAGE

 Disinfestation and disinfection of cultural objects at IPEN/CNEN (books, furniture, sculptures and paintings)

<u>Source</u>: IPEN/CNEN

Nuclear Technologies Contributing to Sustainability

ENVIRONMENTAL PROTECTION

Wastewater Treatment

Removal of harmful impurities (COD, BOD, S/S)

- Removal of colour, odour and others
- >Disinfection of microorganisms (Coliforms & pathogenic organisms)
- > Destruction of endocrine disrupter and synthetic chemicals

<u>Source</u>: IAEA

PARTICIPATION IN COORDINATED RESEARCH PROJECTS ON WASTEWATER AND SLUDGE TREATMENT

1) Radiation Inactivation of Bio-hazards Using High Powered Electron Beam Accelerators (2018 - 2022)

<u>Objective</u>: To enhance and strengthen use of EBA for treatment of biohazards of concern under changing conditions such as at high dose rates, different ambient conditions, and varying substrates in **applications such as radiation sterilization**, hygienization of biosolids, sanitizing infectious hospital waste or toxic effluents and eliminating deliberate biohazards

2) Removal of Emerging Organic Pollutants in the Wastes by Radiation (2019 - 2023)

<u>Objective</u>: To exploit the innovative methodologies and technologies to remove the emerging pollutants such as endocrine disruptors, pharmaceutical residues, and other toxic pollutants in wastewater and sludge

Source: IAEA, IPEN/CNEN

PHARMACEUTICALS AND WATER IMPACTS

From humans and animals, pharmaceuticals going to several environmental matrices: water, sewage, soil, plants and food !!!

Green algea

Dafnids

Salmo trutta

Pharmaceuticals have been introduced into the food chain !!!

Source: IPEN/CNEN

ELECTRON BEAM IRRADIATION OF PHARMACEUTICALS

Environmental Science and Pollution Research https://doi.org/10.1007/s11356-020-11718-8

ADVANCED OXIDATION/REDUCTION TECHNOLOGIES: AN PERSPECTIVE FROM IBEROAMERICAN COUNTRIES

Is ionizing radiation effective in removing pharmaceuticals from wastewater?

Flávio Kiyoshi Tominaga¹⁽¹⁾ • Thalita Tieko Silva¹ • Nathalia Fonseca Boiani¹ • Juliana Mendonça Silva de Jesus² • Antonio Carlos Silva Costa Teixeira² • Sueli Ivone Borrely¹

- Fluoxetine Prozac (depression)
- > Amoxicilin; Ciprofloxacin; Sulfadiazine (antibiotics)
- > Aspirin and Voltaren (anti-inflamatory)
- > Propranolol (blood pressure)
- Metformin (diabetics)

<u>Source</u>: IPEN/CNEN

CHINA'S ELECTRON BEAM INDUSTRY OPENS WORLD'S LARGEST WASTEWATER TREATMENT FACILITY

Guanhua Knitting Factory in southern China

Nuclear and Energy Technology Institute Tsinghua University

June 29th, 2020

- Capacity to treat 30 million liters of industrial wastewater/day
- Largest wastewater treatment facility using EB technology in the world
- Treatment process will save 4.5 billion liters of fresh water/year
- Enough to quench the thirst of 100,000 people/year

IAEA TC PROJECT BRA1035 -Establishing a Mobile Unit with an Electron Beam Accelerator to Treat Industrial Effluents for Reuse Purposes (2016 - 2020)

INNOVATION AGREEMENT with Truckvan Industry

Objective: To enlarge the national capacity to treat industrial effluents using electron beam accelerators, **the mobile unit treating effluents on site from 1 m³/h up to 1,000** m³/day, will provide an effective facility between a laboratory-scale plant to a large-scale plant with the objective to demonstrate the efficacy and transfer the technology

Source: IPEN/CNEN

> Quantities of energy, treatment capacity and costs by type of effluent treated in the Mobile Unit

EFFLUENTS	Dose (kGy)	Amount (m³/day)	Power (kW)	Capital cost (Million US\$)	*Variable cost **(Variable and fixed costs) (US\$)	Cost/m ³ of effluent treated (US\$)
Removal of geosmine (GEO) and methilisoborneol (MIB) from drinking water	1	1,000	20	1.5	0.20 (0.38)	0.60 (1.14)
Removal of industrial textile dyeing from wastewater	2	500	20	1.5	0.20 (0.38)	1.20 (2.28)
Elimination of coliforms from raw sewage, secondary and chlorinated effluents	3	340	20	1.5	0.20 (0.38)	1.77 (3.36)
Removal of organic compounds from petroleum production water	20	50	20	1.5	0.20 (0.38)	12.0 (22.8)
Removal of PCB from transformers oils	50	20	20	1.5	0.20 (0.38)	30.1 (57.1)

* Variable cost only (maintenance, electricity and labor)

** Both variable and fixed costs (depreciation, bank interest and management)

Business Plan for the IAEA TC Project BRA1035:

- a) Project Costs
 > Capital Cost (Investment)
 - Initial investment costs of the Mobile Electron Accelerator: US\$1,500,000.00
- Operating Costs

 Operating costs (fixed and variable) of the Mobile
 Electron Accelerator:
 US\$380,500.00/year
- Rental Price of the Mobile
 Facility
 Rental price calculation of

the Mobile Electron Accelerator: US\$31,708.00/month or US\$380,496.00/year Source: IPEN/CNEN

Nuclear Technologies Contributing to Sustainability

ENVIRONMENTAL PROTECTION

NUTEC Plastics Polymer Biodegradable

ipen NUCLEAR TECHNOLOGY FOR CONTROLLING PLASTIC POLLUTION (NUTEC PLASTICS)

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.

IAEA's efforts to deal with plastic pollution through recycling using radiation technology and marine monitoring using isotopic tracing techniques

It provides science-based evidence to characterize and assess marine microplastic pollution, while also demonstrating the use of ionizing radiation in plastic recycling, transforming plastic waste into reusable resources

Recycling with irradiation

Using gamma and electron beam radiation technologies as a complement to traditional mechanical and chemical recycling methods, certain types of plastic waste can be modified and therefore reused or recycled. These technologies can complement existing recycling methods to:

- Sort mechanically treated plastic waste according to polymer type.
- Breakdown plastic polymers into smaller components to be used as raw materials for new plastic products.
- Treat plastic so that it can be amalgamated with other material to make more durable products.
- Convert plastic into fuel and feedstock through radiolysis (irradiation + chemical recycling).
- > Precise scientific data to inform plastic pollution policies
- Strengthened methodology to track plastics
- > Effective and efficient technologies
- Scalable technology

Source: IAEA

INFLUENCE OF ELECTRON BEAM IRRADIATION ON THE MECHANICAL AND THERMAL PROPERTIES OF PBAT/PLA POLYMERIC BLEND ECOVIO®

CDED

- GREEN POLYMER BIODEGRADABLE POLYMERIC BLEND ECOVIO[®] needs to be resistant to cross sectional demands, impact and thermal stability and should have an average lifetime of 1 to 5 years
- Then, for INJECTED PACKAGING, FILMS FOR TUBE PRODUCTION, PLASTIC BAGS, PACKAGING FOR COSMETICS AND FOOD, it is recommended to use the PBAT/PLA polymeric blend Ecovio® irradiated by EB with 65 kGy

Industrial EBA (1.5 MeV, 25 mA, 37.5 kW) application on the PBAT/PLA polymeric blend Ecovio® was studied.
Source: IPEN/CNEN

RESULTS OF MECHANICAL AND THERMAL ANALYZES OF THE PBAT/PLA POLYMERIC BLEND ECOVIO® AS A FUNCTION OF RADIATION DOSE

- EB irradiation reduce only 2.4% the melting temperature of the PBAT/PLA polymeric blend with an absorbed dose of 80 kGy.
- A reduction of 78.6% was observed in relation to tensile strength at the highest radiation dose of 80 kGy.
- There was also a reduction of 80% in Yong's modulus at 80 kGy absorbed dose.
- A significant change in hardness was not observed at a dose of 65 kGy in relation to the non-irradiated material.
- With absorbed dose of 65 kGy , there was an increase of 43% in impact strength resistance and an increase of 17.4% in thermal stability of the polymeric blend

<u>Source</u>: IPEN/CNEN

CDED

Nuclear Technologies Contributing to Sustainability

<u>HEALTH</u>

Radioisotope Production (Industry and Nuclear Medicine) Brazilian Multipurpose Reactor

PRODUCTION OF RADIOPHARMACEUTICALS AT IPEN/CNEN

PRODUCTION OF RADIOPHARMACEUTICALS AT IPEN/CNEN

> 400 generators / week
 > 450 Ci (⁹⁹Mo) / week
 > 250 - 2000 mCi

Imported radioisotopes costs

- US\$ 15 million/year (⁹⁹Mo)
- US\$ 3 million/year (radioisotopes for NM)

a Serviço da Vida

Source: IPEN/CNEN

Source: IPEN/CNEN

RMB **Radioisotope Production (Industry and Health)**

Application	Radioisotope	Target Irradiation	Frequency of Production ⁽¹⁾	Annual Production ⁽²⁾ (Ci)
	Mo-99	U-235	W	54,000
	I-131	U-235	W	5,400
	I-131	Te-130	W	2,700
	Cr-51	Cr-50	В	5.4i
Injectable	Sm-153	Sm-152	В	108
Radiopharmaceuticals	Lu-177	Lu-176	W	270
	Ho-166	Ho-165	W	5.4
	Y-90	Y-89	W	5.4
	W-188	W-186	М	1.2
	P-32	S-32	В	5.4
Brachytherapy	I-125	Xe-124	W	120
	lr-192	Ir-191 (seeds)	W	12.000
	Intervention U-235 W I-131 U-235 W I-131 Te-130 W Cr-51 Cr-50 B Sm-153 Sm-152 B Lu-177 Lu-176 W Ho-166 Ho-165 W Y-90 Y-89 W W-188 W-186 M P-32 S-32 B I-125 Xe-124 W Ir-192 Ir-191 (seeds) W Ir-192 Ir-191 (wires) M Co-60 Co-59 Y Co-60 Co-59 Q Se-75 (3) Se-74 M Br-82 Br-81 Q Hg-203 Hg-202 Q I-131 Te-130 W	М	20 wires	
Radiotherapy	Co-60	Co-59	Y	15
Industry	lr-192	Ir-191 (pellets)	В	30,000
	Co-60	Co-59	Q	2.5
	Se-75 ⁽³⁾	Se-74	М	6,000
Radiotracers	Br-82	Br-81	Q	0.2
	Hg-203	Hg-202	Q	15
	I-131	Te-130	W	On demand
(1) Production = W (Weekly).	B (Biweekly), M (Mounthly), T	(Quarterly) and Y (Yearly)		Source: IPEN/CNEN

Production = W (Weekly), B (Biweekly), M (Mounthly), T (Quarterly) and Y (Yearly) (1)

(2) 1 Ci = 3.7 x 10¹⁰ Bq (Becquerel)

Tecnología Nuclear a Serviço da Vida

Thank you very much for your attention! Wilson Aparecido Parejo Calvo <u>wapcalvo@ipen.br</u>

