

CONTENT

- 1. The RMB Project
- 2. Project Status:
 - Project management
 - Site
 - Licensing
 - Project Highlights

RESEARCH REACTORS IN BRAZIL

Name	Utilization	Power	Site	Startup	Туре
IPEN/MB-01	Critical facility – PWR Core	100 W	IPEN/CNEN-SP	1988	Open Core - Pin
	analysis		São Paulo		Туре
ARGONAUTA	Research -Education	500 W	IEN/CNEN-RJ	1965	Argonaut
			Rio de Janeiro		Argonaut
IPR-R1	Research -Education	100 kW	CDTN/CNEN-MG	1960	TRIGA MARK-I
			Belo Horizonte		TRIGA WIARR-I
VEA-R1	Research	5 MW	IPEN/CNEN-SP	1957	Reator MTR
	Radioisotope Production	(2MW)	São Paulo		Piscina Aberta

1957 : IEA

WHY A NEW RESEARCH REACTOR?

The RMB will provide Brazil with a key infrastructure to national development activities of the nuclear sector in the areas of social, strategic, industrial, scientific and technological development and application.

>Structuring project.

RMB MAIN FUNCTIONS

- Radioisotope Production for Medical and Industrial Applications
- Fuel and Materials Irradiation Testing
- Neutron Beam Laboratory
- > Education and Training

RADIOISOTOPE PRODUCTION

RMB Objectives

Social Application

- National autonomy in producing radioisotopes for application in medicine, industry, agriculture and environment
- Emphasis on Mo-99 production for Tc-99m provision to the nuclear medicine application
- To support the increase of the nuclear medicine application in benefit of the society

RMB is a key factor for the supply of ⁹⁹Mo/^{99m}Tc to the nuclear medicine application in Brazil

Nuclear Fuel and Materials Irradiation Testing

RMB Objectives

Strategic and Industrial Application

- To generate national capacity for testing and qualifying:
 - nuclear fuels for power reactors
 - new nuclear fuels for research reactors
 - materials for nuclear reactors apllication

RMB is a key factor for the autonomous development of nuclear fuel and materials for reactor application

NEUTRON BEAM LABORATORY

RMB Objectives

Scientific and Technological Development

- To increase the national capacity in R&D in nuclear techniques applications
- To have a Neutron Activation Analysis Laboratory available for the scientific and technical community
- To create a National Laboratory for Neutron Beam Utilization in complement to the National Laboratory of Synchrotron Light (LNLS)

RMB will contribute strongly to S&T&I in Brazil

RMB PROJECT SCOPE

RMB PROJECT MANAGEMENT

- ➤ Project managed by the Research and Development Directorate of the Brazilian Nuclear Energy Commission (DPD-CNEN)
- ➤ Scope and preliminary design, licensing process managing and commissioning verification performed by the Research Institutes of CNEN: IPEN, CDTN, IEN, CRCN
- ➤ CNEN CNEA (Argentina) Cooperation Agreement on Reactor Design of RMB and RA-1O based on INVAP / Opal design
- ➤ Basic and detailed design, manufacturing, construction, assembling and their management will be carried out by national and international companies.
- Project technically supported by Brazilian Academy
- Project Cost estimation of US\$ 500 million
- ➤ Project time span of at least 6 years after the first contract signature and availability of funds. (2013)

 Ministério da Ciência, Tecnologia

e Inovação

RMB PROJECT STATUS

- CNEN Institutes technicians developed the conceptual engineering design of the reactor systems and main facilities.
- ➤ Basic engineering design of systems, buildings and infrastructure of the RMB (except basic engineering design of pure nuclear systems and components). Brazilian company INTERTECHNE contract under development.
- ➤ Brazil-Argentina Agreement (CNEN-CNEA) for common basic engineering design of the RMB and RA-10 (pure nuclear part). OPAL reactor in Australia as a reference. Argentinean company INVAP contract under development.
- ➤ Environmental licensing process started. Term of Reference for EIA approved by IBAMA. EIA done by Brazilian Company MRS. EIA under analysis of IBAMA. Three public hearings done.
- Nuclear licensing process started. Site Evaluation Report is under analysis by DRS/CNEN.

Distâncias: (Rota / Linear)

— lperó / São Paulo (140 Km / 109 Km)

— Iperó / Sorocaba (50 Km / 39 Km)

- N01 Reactor Building
- N02 Neutron Guide Bldg
- N03 Spent Fuel Bldg
- N04 Hot Cells and Labs for RI production
- N05 Hot Cells and Labs for Material testing
- N06 Radiochemistry Labs
- **N07 Operation Offices**
- N08 Researchers Offices
- N09 Cooling Towers
- N10 Waste Management Bldg
- N11,N12 Substation and Diesels
- N13 General Workshops
- N14 Access control

Nuclear Research and Production Area

Nuclear Research and Production Area

Core Design Features

- ➤ Thermal Power: 30 MW
- ➤ Fuel Assemblies: LEU MTR
- ➤ Core configuration: 5 x 5 grid with 23 FAs and 2 incore irradiation positions
- ➤ Control Rods: 6 Hf plates (3 per Guide Box)
- ➤ Core Cooling: 3100 m³/h upward direction

South - North Building Section

+ 13.00 m level

- 6.00 m level

PHG

Hot Cells

THC

<u>[a</u> CNEN

Reactor Block and Embedded Components

Reactor Block and Embedded Components

Pools

Reactor Layout

Reactor layout

Reflector Vessel - Irradiation Facilities

NTD Irradiation Positions

Quantity	3	2	
Main Dimension	Ø 6"	Ø 8"	

Bulk Irradiation Positions

Quantity	17 + 3
Main Dimension	Ø 6omm

Pneumatic Irradiation Positions

Quantity	14	1
Main Dimension	Ø 110.3mm	110mm x 260mm

Loop Irradiation Area

Quantity	1
Main Dimension	410mm x 750mm

In Core Irradiation Positions

Quantity	2
Main Dimension	Ø 53,6 mm

Thermal flux [n/cm²s]En < 0.625 eV - Midline of active length

Post Irradiation Laboratory

Post Irradiation Laboratory

Thank You

