LAS-ANS Symposium 2012

Prates, Carlos L. M. Ferrari, Lucio D. B. Cardoso, Tarcísio F.

Geology and Seismology

Characteristics of the Region Seismic Design Bases

Program for reassessment and update

Geological data Seismological data

Seismic hazard

Analysis of updated seismic catalogue

Description of Angra dos Reis Seismographic Station

PSS description

Summary of recorded data

Geology and Seismology

Characteristics of the Region

Initial studies by Weston Geophysical Research, 1970s -'80s – site characteristics – for Central Nuclear Almirante Alvaro Alberto (CNAAA) location:

- Geologically Stable Continental Region (SCR), intraplate,
- Far from tectonic plates boundaries,
- Without geological faults that could produce high-magnitude earthquakes.
- Residual tectonic activities: accommodation of blocks moved during the Tertiary.

Characteristics of the Region (cont.): Low-seismicity

- Closest active fault to NPP Monsuaba, 24 km away from site: No deformations of surface land in epicentral area; Small magnitude earthquakes (largest event < 3.0 m_b); Can not be associated with moderated to large earthquakes or with sustained seismic activities. => Not a capable fault (acc. to USNRC concept).
- Regional seismic events (d < 320km, magn.> 4.0 m_b):

Location	Date (Year)	Dist. (km)	Intensity (MM)	Magnit. (m _b)
Lorena / SP	1861	91	V - VI	4.4
São Pedro-SP RJ	1886	87	V - VI	4.3
Mogiguaçu/ Pinhal / SP	1922	283	VI	5.1
Cunha / SP	1967	65	VI-VII	4.1
Atlantic Ocean	2008	304	A.	5.2

Seismic Design Bases

- Original deterministic design criteria:
 - 0.10 g horizontal acceleration (outcropping rock)
- Design spectrum defined by Weston Geophysical Research (Basis: U.S. standards; similar to Reg. Guide 1.60, 1973)

Late 90s:

- Updated geological and seismological database,
- Latest regional faults (neotectonic) incorporated and
- Probabilistic seismic hazard analysis (Basis: recent USNRC standards for Probabilistic Seismic Hazard Analysis - PSHA).

=> Results:

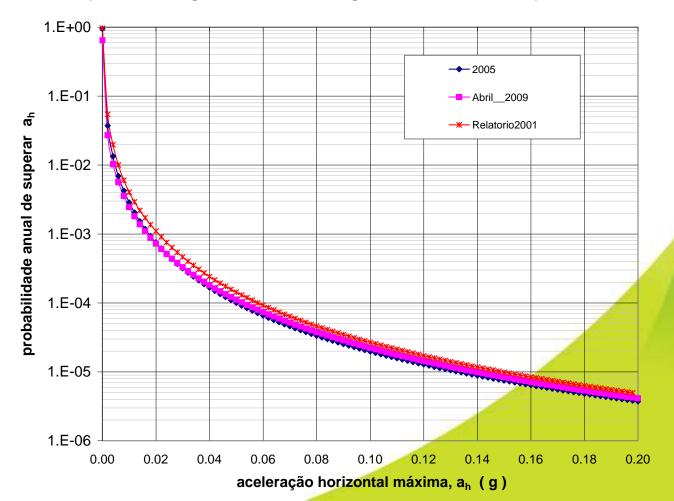
- No capable faults in the region (USNRC criteria);
- Diffuse seismicity, without clearly defined seismogenic sources;
- Adopted design acceleration level is suitable;
- Earthquake Catalog was updated (2003, 2008): seismic hazard analysis was repeated twice, without relevant changes in results.

Seismic Design Bases (cont.) - PSHA:

- Maximum potential magnitude (m_b) (upper limit for earthquake recurrence curve) for the region + adjoining areas:
 - Continental part: 6.5
 - Oceanic part: 7.0
- Earthquake catalog: Recent and historical events (since 1767); Seismic recurrence \Leftrightarrow Frequency x Magnitudes (3.5 \leq m_b \leq 7):

$$Log(\sum N) = 4.40 \ (\pm 0.03) - 1.29 \ (\pm 0.04) \cdot m_b$$

• Seismic energy attenuation (Toro, 1997), from epicenter to site:


$$Ln(Y) = 2.07 + 1.2 (M-6) - 1.28 [ln(RM)] + 0.05 max[ln(RM /100), 0] - 0.0018 RM$$

• Probabilistic Seismic Hazard (Location & Magnitude uncertainties): $P[Y > y^*] = \sum_k \sum_l P[Y > y^* \mid M,R] \cdot P_M(m_k) \cdot P_R(r_l)$

Seismic Design Bases (cont.) – Seismic hazard

Peak Ground Acceleration (PGA) for Safe Shutdown Earthquake:

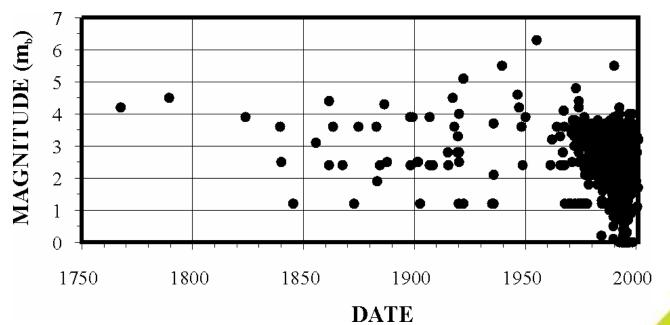
- Probability of 10⁻⁴/year ⇔ PGA < 0.06 g
- Probability of design PGA (0.10g) ⇔ ~2.2x10⁻⁵/year

Reassessment and update program:

Evolution of Knowledge & Normative Basis: Geological (latest faults - neotectonic & their seismogenic potential) + Seismological database reassessment => Update Seismic Hazard

Geological data:

- 1980s: Regional faults affecting sedimentary surfaces & deposits in central part of Bacia de Resende, RJ, was considered as unique indication of tectonic activity in beginning of Quaternary.
- End of 80s: Changes in assumed tectonic stability of faults: Evidences of neotectonic activity of faults, incl. movements in Pleistocene & Holocene, in Bacias de Taubaté & Resende, Gráben da Guanabara, Planalto de Campos do Jordão & central part of Shear Zone of Rio Paraíba do Sul.
- Brazilian SE region has received most attentions in neotectonic studies. Necessity of review work to integrate data + Opportunity to insert these data in international database, e.g., GEM (Global Earthquake Model; Objective: public standardized database with active faults & seismic sources).

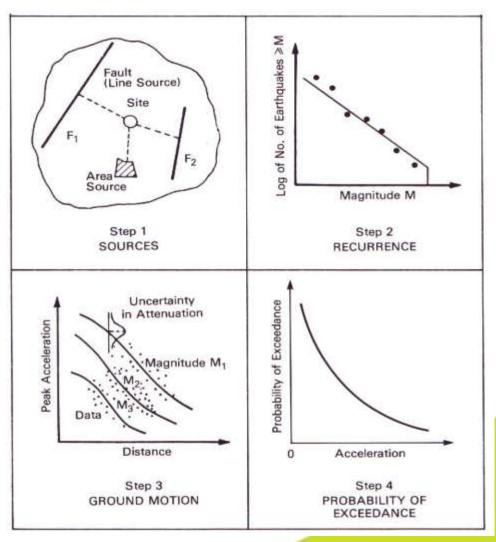

Reassessment and update program - Geological data (cont.): Update of geological database: regional neotectonic & associated faults, based on available geological data in literature, in a 3-Step Program:

- Phase 1 Database update area R < 101 km from site; map of geological faults in scale 1:500.000, representing fault extension.
- Phase 2 Area between 101 km < R < 322 km; scale 1:2.000.000.
 - In phases 1 & 2: list each fault characteristics [fault direction, type of displacement, min. length, width & depth, age(s) of movement(s)]; correlations between faults & seismic events.
- Phase 3 Field survey in selected inland faults; Listing and analysis
 of structural data; Evaluation of sedimentary soil (14C application);
 Determination of the geological ages of fault movements.
- Information + USNRC criteria base => Identification of capable faults.

Reassessment and update program - Seismological data:

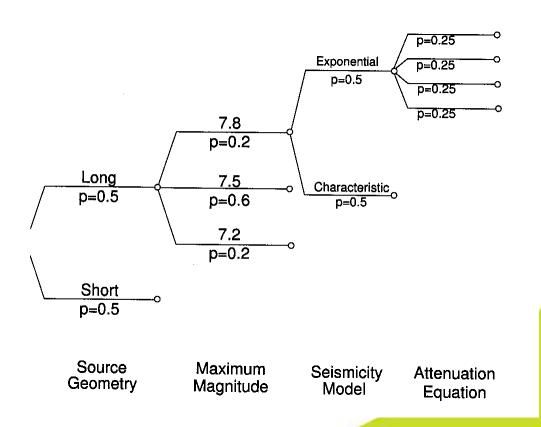
Seismic instrumental data in SE Brazil:

Data completeness for magnitudes > 3.5 since 1975:



- Regional seismological data update (1767 Dec., 2011);
- Catalog analysis => Seismic Recurrence Equations for whole region or its parts.

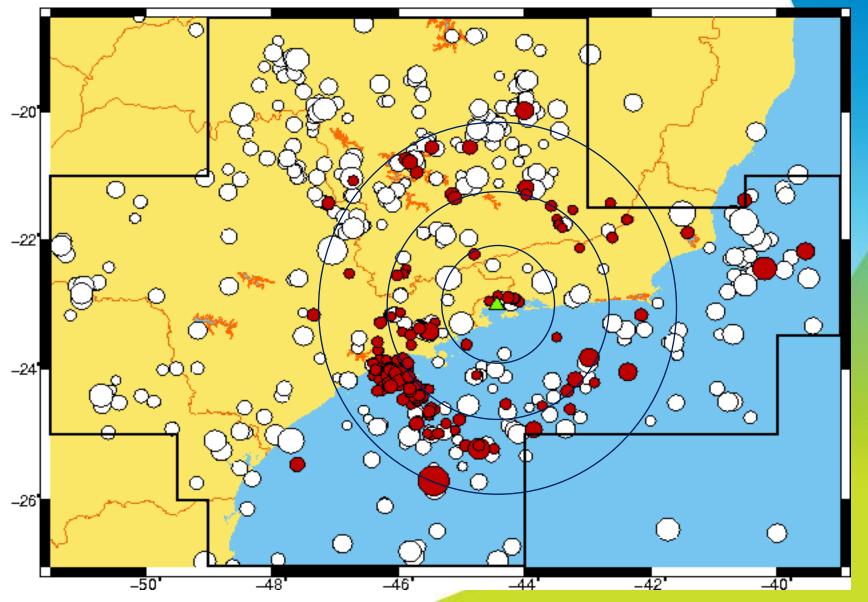
Reassessment and update program - Seismic hazard analysis review:


Basis: USNRC (NUREG/CR-6372, RG 1.208, ...), EPRI...:

Seismic Source & Ground Motion Characterization to obtain Hazard Calculations

Reassessment and update program-Seismic hazard analysis review (cont.):

- Parametric sensitivity study of the recurrence equations.
- Other attenuation equations for Stable Continental Regions (SCR) to check uncertainties involved.
- Verification of possible new seismic sources => Other seism tectonic models than unique diffuse seismicity model of PSS?
- Alternative models & associated probabilities (Logic-Trees)


Description of ELETRONUCLEAR's Seismographic Station:

- Broad band Seismographic Station close to NPP site (Estação Sismográfica de Angra dos Reis ESAR): operated since 2002, in cooperation with IAG/USP (responsible for the Brazilian Seismic Catalog); Berrocal & Associados Co. contracted for operation, maintenance and generation of seismic reports.
- Objetive => Local & regional seismic events monitoring for:
 - Determining epicenters of local small magnitude events
 - Estimating regional crustal structure
 - Evaluating regional seismic energy attenuation
 - Obtaining a detailed regional seismic data base, for CNAAA's PSHA

PSS (Província Sismo-tectônica do Sudeste) description:

- CNAAA in a low seismicity region;
- Geological faults & Seismic events correlation (Seismic Source Characterization) => One single diffuse seismogenic model;
- Available data is not uniformly distributed in the region (small quantity & not uniformly distributed available seismographic stations),
- => Seism tectonic province: A polygon (from 300 km to > 600 km from site), (recurrence seismic equation anchored on minimum consistent data).

PSS seismic events (1767 - Dec. 2011; Magnitudes 2.0 <= mb <= 5.2). Red dots: ESAR recorded events; Blue circles: R=100, 200, 320 km from site

Analysis of updated seismic catalogue – Data summary: 1767 - Dec./2011 seismic events:

• $m_b \ge 2.0$: PSS: 463 events

 $R \le 320 \text{ km}$: 283

 $R \le 100 \text{ km}$: 20

• $m_b \ge 3.0$: $R \le 320 \text{ km}$: 59

Magnitude (Richter)	Distance (km)			
	12 <d<u><60</d<u>	60 <d<u><180</d<u>	180 <d<u><320</d<u>	
3,0 <u><</u> M <u><</u> 3,5		6	30	
3,5 <m<u><4,0</m<u>		5	13	
4,0 <m<u><4,5</m<u>		3	-	
4,5 <m<u><5,2</m<u>			2	

⇒ Confirms:

- Low regional seismicity and
- Majority of events < 3 m_b

Conclusion

• Initial studies performed by Weston G.R. (70-80's): Site Characteristics & Seismic Design Bases (Deterministic criteria: 0.10 g acceleration & Spectrum)

Late 90s Results:

- Updated geological (neotectonic faults) & seismological database; No capable faults in the region (USNRC criteria); Diffuse seismicity, without clearly defined seismogenic sources;
- PSHA => Adopted design acceleration level is suitable.
- Reassessment and update program (2012+3years):
- Evolution of Knowledge & Normative Basis: Geological
 (neotectonic faults & their seismogenic potential) + Seismological
 database reassessment => Update PSHA