

TECNOLOGIA DE PONTA EM TRATAMENTOS ATRAVÉS DE RAIOS GAMA

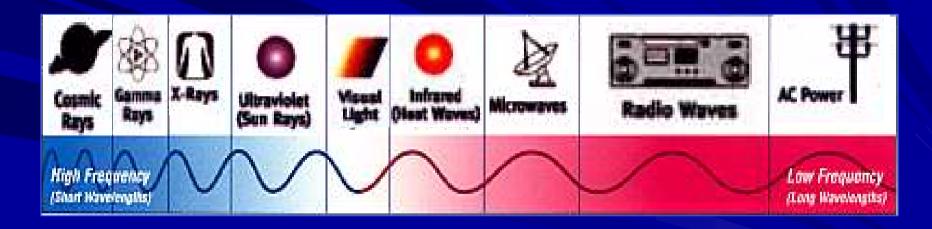
TECNOLOGIA DE PONTA EM TRATAMENTOS ATRAVÉS DE RAIOS GAMA

♣ 1980 InÍcio das atividades EMBRARAD JS 7400

4 1990 Mudança do JS 7400 para o JS 7500

4 1999 Instalação da Unidade II JS 9600

CBE



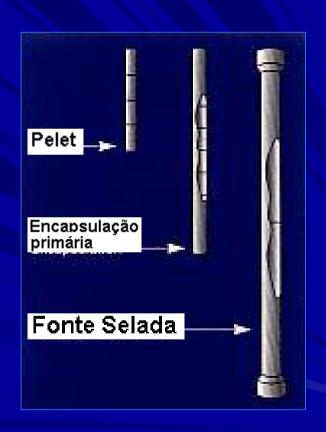
O QUE É RADIAÇÃO?

TIPOS DE RADIAÇÃO

COBALTO 60

COBALTO - 60

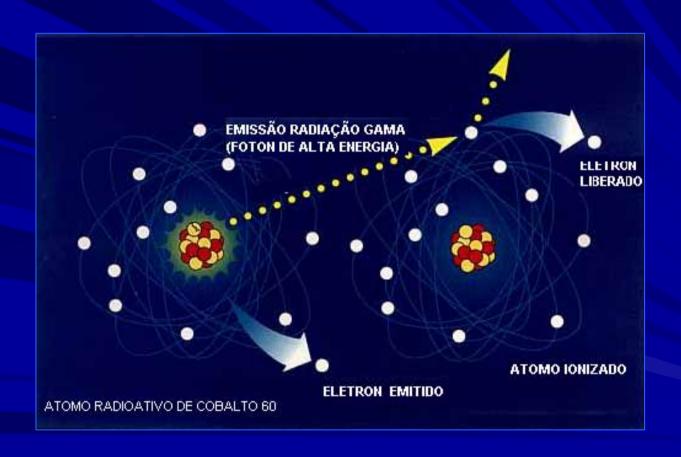
59

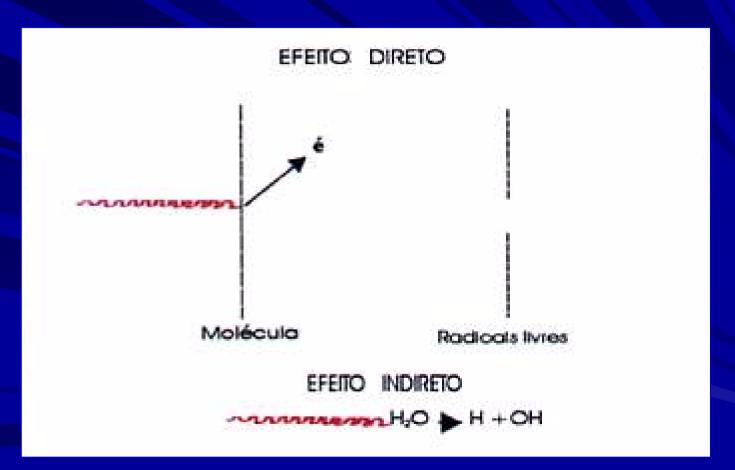

60

Origem Co (**n**,**y**)

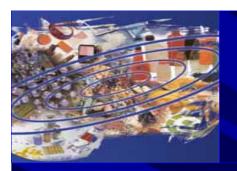

Meia Vida = 5,29 anos

Energia = 1,17 M e V


1,33 M e V



PORQUE USAR O PROCESSO DE RADIAÇÃO GAMA?



INTERAÇÃO DA RADIAÇÃO COM A ÁGUA, FORMAÇÃO DOS PRODUTOS DA RADIOLISE

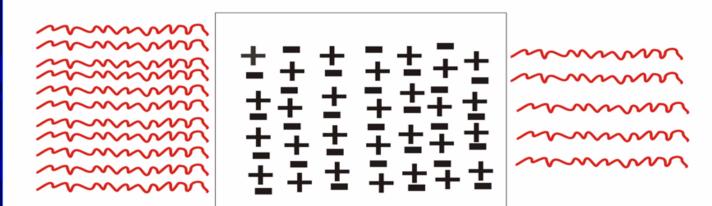
$$H_2O + H \rightarrow H_3O^+ + e^-$$

$$H_2O \rightarrow H_2O^+$$


$$e^{-}_{aq} + H_2O \rightarrow H_3O^{+} + OH$$

$$H_2O^+ + H \rightarrow H_3O + OH$$

$$H_3O^+ + e^- \rightarrow H_3O^-$$


$$e^-_{aq} + e^-_{aq} \rightarrow H_2 + 2 OH^-$$

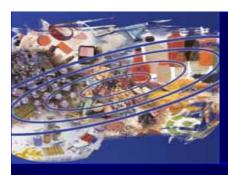
DOSE DE RADIAÇÃO

DOSE DE RADIAÇÃO

A dose de radiação é medida pel a energia cedida ao material por unidade de massa A unidade é o Gray (Gy) que corresponde a energia cedida de 1 Joul e por quil ograma de massa

1Gy = 1J/Kg

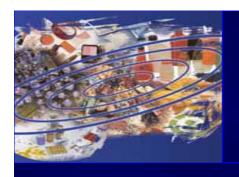
APLICABILIDADE DO PROCESSO


APLICABILIDADE DO PROCESSO

DN – DOSE NECESSÁRIA PARA OBTER O EFEITO DESEJADO

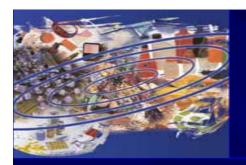
DT - DOSE DE TOLERÃNCIA DO PRODUTO

APLICÁVEL SE, E SOMENTE SE DN < DT

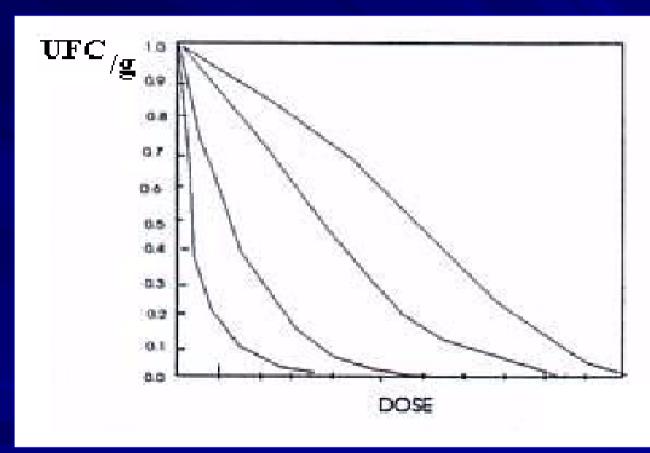


MATERIAIS TRATADOS POR RADIAÇÃO

- Material Farmacêutico
- Médico-Cirúrgico
- Fitoterápicos
- Cosméticos
- Alimentos
- Veterinários
- Polímeros e Gemas

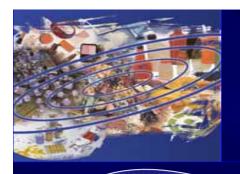


D_N DOSE NECESSÁRIA


• Redução de carga microbiana

Modificações físico-químicas

RADIOSENSIBILIDADE DE MICROORGANISMOS


RADIOSENSIBILIDADE DE MICROORGANISMOS

RADIOSENSIBILIDADE DE MICROORGANISMOS

MICROORGANISMO	\mathbf{D}_{10} (GY)
ESCHERICHIA COLI	150 - 350
PROTEUS VULGARIS	100 –200
SHIGELLA (3 SOROTIPOS)	250 - 400
SALMONELA (7 SOROTIPOS)	500 - 1000
STREPTOCOCCUS	750 - 1000
S. PYOGENOS	500 - 1000
STAPHYLOCOCCUS AUREUS	800 - 1000

D₁₀ - DOSE DE RADIAÇÃO QUE REDUZ A 10% A CONTAGEM INICIAL

FATORES QUE CARACTERIZAM A RADIOSENSIBILIDADE

Água e Humidade

Condições de Anorexia

Taxa de Dose

Análise Laboratorial

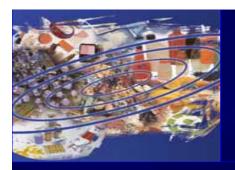
Oxigênio

$\mathbf{D}_{\mathbf{N}}$

Polímeros

Gemas

Embalagens

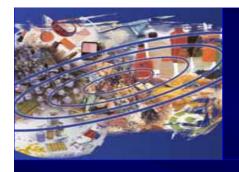


D_T MATERIAL FARMACEUTICO

- **✓ Medicamentos**
- Princípio ativo
- Estética
- ✓ Embalagem
- Funcionalidade
- Estética

ALGUNS EXEMPLOS DA INFLUÊNCIA DO TRATAMENTO POR RADIAÇÃO EM FARMACOS

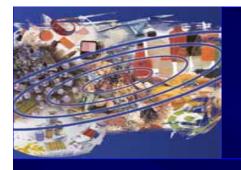
FARMACO	CONCENTRAÇÃO FORMA	DOSE	analise	PERDA
	ALCALOIDE	S E DERIVADOS	DE MORFINA	
SULFATO DE ATROPINA	Pó solução 1% preparado colírio com conservante	25-50kGy 25kGy 25kGy	Ir,mp,nmr,or,tlc, uv,wgt	Max. 0,5% perda de atividade comprovada maior que a solução simples
MORFINA HCL	Pó Pó várias concentr. 2,0-0,50-0,20-0,20-0,05% com conservante 0,5%AET 0,2% TETIOL solução injetável	25kGY 25kGy 25kGy 25Kgy 2,5-25kGy	Col,uv,mp Uv Ph, uv PH, UV ir	Perto de 5% 15-20-45-60-80% 7% 0% - 7%
		BARBITURICOS		
AMILBARBITON Na	pó	25kGy	tlc	Sim perda qualitativa
BARBITAL	pó	25-50kGy	Tlc,pH,uv	Nenhuma
BARBITAL Na	Pó Solução 2%	25-50kGy 25-50kGy	Tlc,pH Tlc,ph,uv	Alteração significativa Sim perda qualitativa



D_T MATERIAL MÉDICO-CIRÚRGICO

Funcionalidade

Estética



FITOTERÁPICOS / FÁRMACOS



D_T FITOTERÁPICOS

• Princípio ativo

RESULTADO ANÁLISE POR CROMATOGRAFIA EM CAMADA DELGADA (¹)

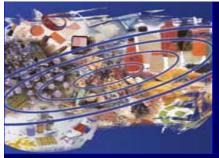
Amostra: Unha de Gato

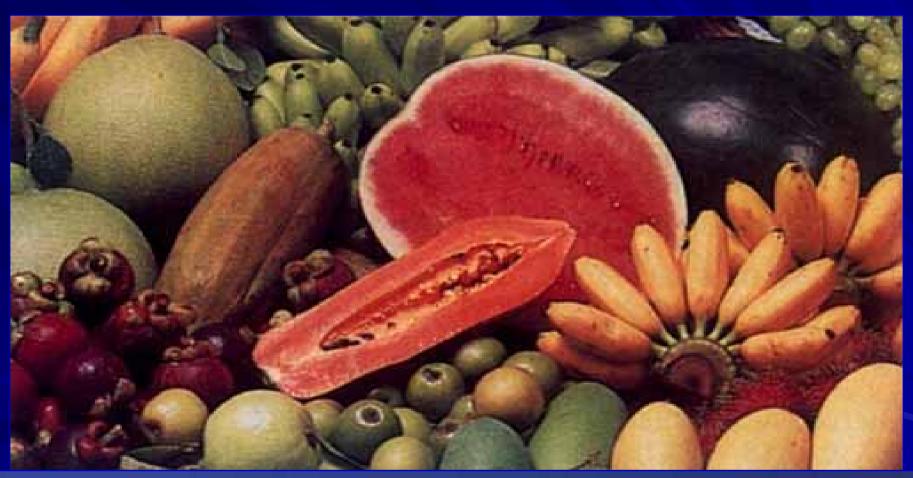
ESPECIFICAÇÃO	TESTEMUNHA	DOSE 1 PARA rdc	DOSE 2 PARA dc	OBSERVAÇÃO
mitrafilina	positivo	positivo	positivo	Foram efetuados testes com altas
ricnofilina	positivo	positivo	positivo	doses para averiguação da
Isomitrafilina, Isopteropodina, Uncarina A + B	positivo	positivo	positivo	radiocompatibilidade e os resultados em todas as doses foram positivas.

COSMÉTICOS

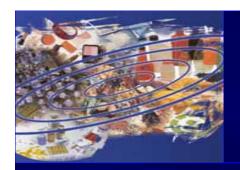
D_T COSMÉTICOS

- Matéria-prima
 - Alteração de componentes
- Produto acabado
 - Princípio ativo
 - Odor
 - Estética
- Embalagem
 - Escurecimento




EFEITOS DE RADIAÇÃO GAMA SOBRE MATÉRIAS PRIMAS EM COSMETOLOGIA

MATERIAL	DOSE (KGY)	EFEITO OBSERVADO
Solvente		Nenhum
Propileno Glicol	25	Variações PH
Glicerina	25	Traços de metano etano e
Etanol	25	monóxido de carbono
Água	25	H2O2 e OH
Espessantes		
Carboxil-metil	0,8	redução
Celulose Sódica		viscosidade
Pó de Acácia	25	redução de 11% viscosidade
Alginato de Cálcio	10	degrada totalmente
Gelatina	20	perda de 15% a 35% viscosidade
Tragante	10	perda de 7% viscosidade
Talco	25	nenhuma modificação



ALIMENTOS

D_T ALIMENTOS

Dose (kGy)	Finalidade	Produto
10 ⁻³	Alteração Genética	Vários Vegetais
0,15 — 0,3	Inibir Germinação	Tubérculos, batatas, cebola, alho, etc.
0,3 – 1,0	Desinfestação	Frutas tropicais
1,0 — 4,0	Eliminar Patógenos	Frango e Suíno
4,0 — 10,0	Redução de carga Microbiana	Alimentos secos, ervas, especiarias, hambúrgueres, etc.
10,0 — 30,0	Esterilização	Alimento de uso especial

LEI DE IRRADIAÇÃO DE ALIMENTOS

Resol ução - RDC n° 21, de 26 de janeiro de 2001

DO de 29/01/2001

A diretoria Col egiada da agência nacional de vigil ância sanitária no uso da atribuição que I he confere o art 11, inciso IV, do regul amento da ANVISA aprovado pel o Decreto 3029 de 16 de abril de 1999, em reunião real izada em de janeiro de 2001.

4.3 Dose Absorvida

Qual quer al imento poderá ser tratado por radiação desde que sej am observadas as seguintes condições;

- a) A dose mínima absorvida deve ser suficiente para al cançar a final idade pretendida;
- b) A dose máxima absorvida deve ser inferior àquel a que comprometeria as propriedades funcionais e ou atributos sensoriais do al imento.

DOSE DE TOLERÂNCIA

SABOR

• ODOR

• ESTÉTICA

IRRADIAÇÃO PARA MOSCA DE FRUTA E LARVAS DE SEMENTE EM FRUTAS E VEGETAIS IMPORTADOS. (3)

Nome científico	Nome comum	Dose (gray)
(1) <u>Bactrocera dorsalis</u>	Mosca de fruta oriental	250
(2) <u>Ceratitis capitata</u>	Mosca de fruta do mediterrâneo	225
(3) <u>Bactrocera cucurbitae</u>	Mosca de fruta do melão	210
(4) <u>Anastrepha fratercul us</u>	Mosca de fruta Sul americana	150
(5) <u>Anastrepha suspensa</u>	Mosca de fruta Caribenha	150
(6) <u>Anastrephaludens</u>	Mosca de fruta Mexicana	150
(7) <u>Anastrepha obliqua</u>	Mosca de fruta das Índias Ocidentais	150
(8) <u>Anastrepha serpentina</u>	Mosca de fruta Sapote	150
(9) <u>Bactrocera tryoni</u>	Mosca de fruta de Queensland	150
(10) <u>Bactrocera jarvisi</u>	Não tem nome comum	150
(11) <u>Bactrocera Latifrons</u>	Mosca de fruta Malasiana	150
(12) <u>Sternochetus mangiferae (Fabricius)</u>	Besouro do caroço de manga	300

NIVEIS DE TOLERÂNCIA À RADIAÇÃO

Níveis de tol erância à radiação de pol ímeros usados para aplicação médicas

Nível de Tolerância (KGy) Material 1.000

Polietil eno (pebd, II dpe, pead, uhmpe, uhmwpe)

Pol iimidas 10.000

Polimetil penteno 20

Sul feto de Pol ifenil eno 1.000

Pol ipropil eno (estabil izado Para radiação).

-Homopol imeró 20 - 50 Comentários

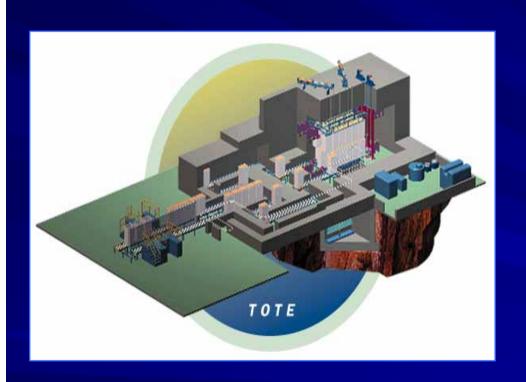
crosslink para ganhar força, perde al gum al ongamento. Todos polietil enos tol eram bem radiação pebd é o

mais resistente

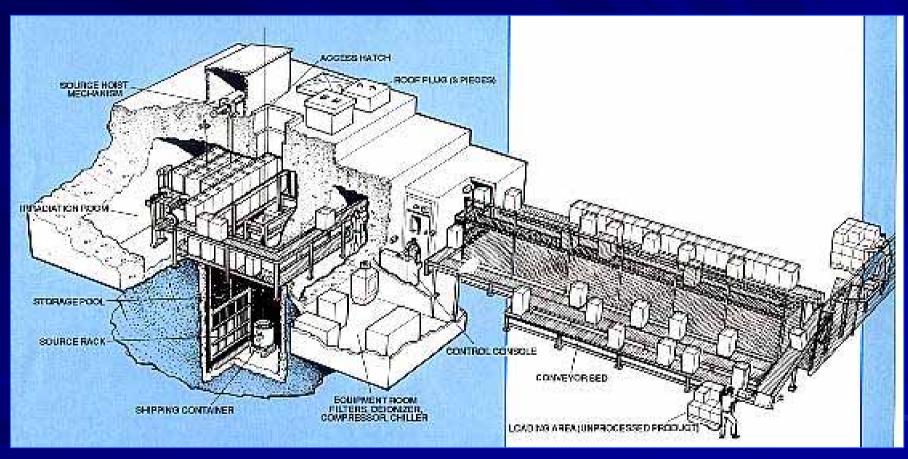
suj eito a degradação por oxidação. Evitar o

uso.

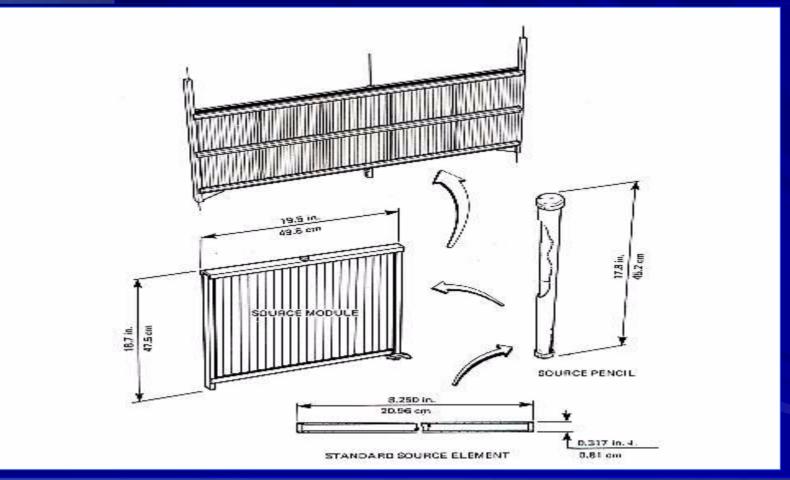
usado com sucesso em seringas. Suj eito a ficar quebradiço em orientação e oxidação. degrada com o tempo. validar com o envel hecimento em tempo real. evitar uso de pol ipropil enos não estabil <u>izados</u>.

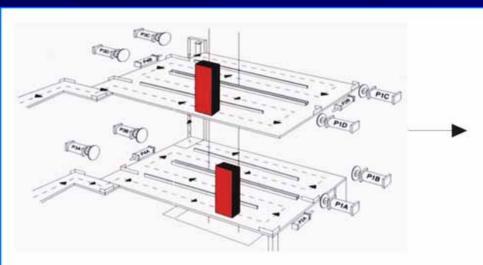

GEMAS

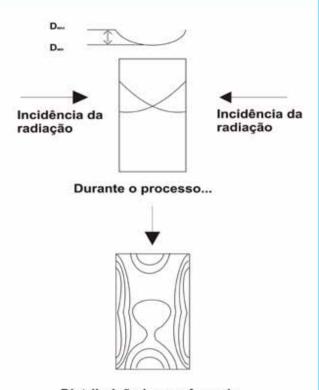
IRRADIADOR DE ESTEIRA

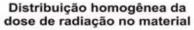


- UNIFORMIDADE DE DOSE EXCELENTE
- UTILIZAÇÃO OTIMIZADA DE COLBALTO
- PROCESSA GRANDES VOLUMES DE MATERIAL
- REQUER POUCA MANUTENÇÃO

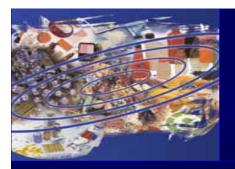

PLANTA ESQUEMÁTICA IRRADIADOR MDS – NORDION JS -9600


ESTRUTURA DA FONTE PLANA DO IRRADIADOR GRANDE PORTE TIPO JS 7500

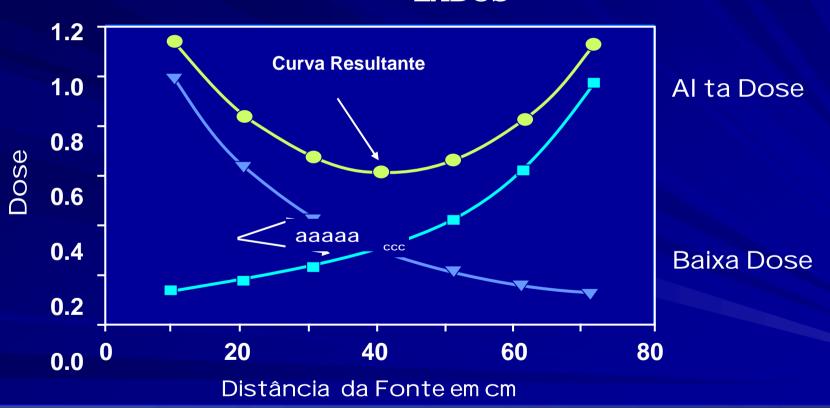


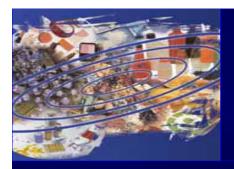


PLANTA DO IRRADIADOR

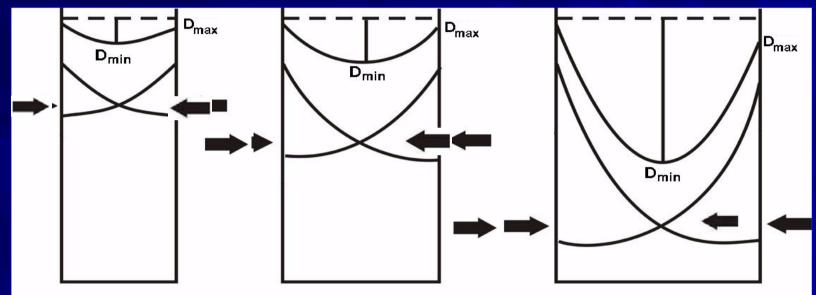


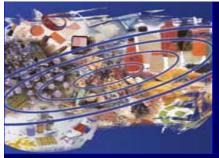
Melhor homogeneidade, garantida por processo automático e totalmente seguro, sem intervenção humana.





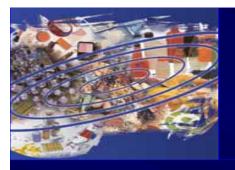
UNIFORMIDADE DE DOSE

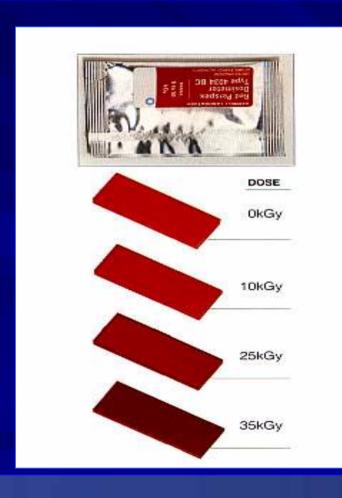

O CONTEINER É IRRADIADO EM TODOS OS LADOS



DISTRIBUIÇÃO HOMOGÊNEA


```
D_n = D_{min}
D_T < D_{max}
X = D_{max} - D_{min} = inomogeneidade
```




CARREGANDO OS CONTEINERES

DOSIMETROS

ISO 11137

6.2 Product Qualification

6.2.1. Product and packaging materials evaluation

6.2.2.Sterelization dose determination

6.3.1. Equipament documentation

6.3 Installation qualification
6.3.2. Equipament 6.3.3. Equipament

testing

6.3.3.Equipament calibration

6.3.4.Irradiator dose mapping

6.4. Process qualification

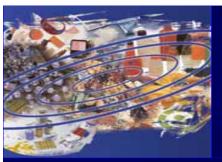
6.4.1Determination of product loading pattern

6.4.2. Product dose mapping

6.5. Certification

Documentation accumulation

Review and approval


6.6. Maintenance of validation

6.6.1. Calibration programme

6.6.2. Irradiator requalification

6.6.3. Sterelization dose auditing

CERTIFICAÇÕES

INTERNATIONAL ATOMIC ENERGY AGENCY

Dosimetry and Medical Radiation Physics Section - Division of Human Health Wagramer Straße 5, P.O. Box 100, A-1400 VIENNA, AUSTRIA
Facsimile: +43 1 26007-21662, Telephone: +43 1 2600-21662, c-mail: DOSIMETRY@IAEA.ORG

Certificate number: 02,080

INTERNATIONAL DOSE ASSURANCE SERVICE: radiation processing dosimetry

Institution:

EMBRARAD LTDA

Rua Agostino Togneri, 399

Address: Country: PO BOX: 04690-090, Jurubatuba Sao Paulo SP

Dosimeters irradiated by:

Date of irradiation:

980209Rb

18-Nov-02

Mr. Ary Araujo Rodrigues Jr., Quality control m 29-Aug-02

Date of evaluation:

RESULTS OF ALANINE-ESR MEASUREMENTS FOR Co-60 GAMMA RAYS

Dosimeter Set #	Estimated irradiation temp (°C)	User stated dose [kGy]	IAEA (measured)* mean dose [kGy]	<u>User stated dose</u> IAEA mean dose
131 - 02 - 80	30.0	26.2	26.44	0.99

* The relative combined standard uncertainty in the measured dose value is 1.7%, inclusive of that transferred from the NPL. The dose determination assumes that the irradiation temperature of the alanine desirneter is precisely known. An over-estimate of the irradiation temperature by 4°C would result in about 1% under-estimate of the dose value.

Agreement within ±5% between the user stated dose and the IAEA measured dose is considered satisfactory.

The absorbed dose was determined using the alanine-ESR transfer dosimetry system. The traceability for these measurements to the National Physical Laboratory (the Primary Standard Desimetry Laboratory of the United Kingdom) was established through their dichramatic dosimetry system.

Dr. Stanislav Vatnitsky DMRP Section SVCEN

Date: Duc 16, 2002

Ker R. Shortt, Ph.D. Head, DMRP Section

Important Notice: This information may not be published except in full. It does not of itself make any claim as to the quality of the measurement at the client laboratory or facility.

CERTIFICAÇÕES

لوكالمة الدولية للطاقة الذريمة

INTERNATIONAL ATOMIC ENERGY AGENCY
AGENCE INTERNATIONALE DE L'ENERGIE ATOMIQUE
МЕЖДУНАРОДНОЕ АГЕНТСТВО ПО АТОМНОЙ ЭНЕРГИИ
ОПОВАНІЗМО INTERNACIONAL DE ENERGIA ATOMICA

WAGRAMER STRASSE 5, P.O. BOX 160, A-1400 VIENNA, AUSTRIA
TELEPHONE: (+43 1) 2600, FACSIMILE: (+43 1) 2600, TELEX: 112645 ATOM A, E-MAIL: Official Mail@late.org, INTERNET: http://www.iaca.org

PRIERE DE RAPPELER LA REFERENCE:

COMPOSER DIRECTEMENT LE NUMERG DE POSTE

326-E2.41

21660

2002 -12-16

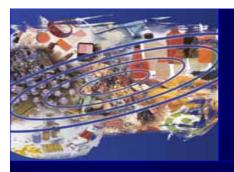
Dear Mr. Ary Araujo Rodrigues Jr.,

We have now analyzed the dosimeter set #131-02-80, which you had irradiated within the frame of IDAS 2002 run. The IDAS certificate No: 02.080 is enclosed.

The results of this run are within the acceptance limit of ±5%. I congratulate you on maintaining your dosimetry system at high level of quality.

With best regards,

Sincerely yours,


SVall

Stanislav Vatnitsky, Dosimetry and Medical Radiation Physics Section Division of Human Health

Enclosure

Mr. Ary Araujo Rodrigues Jr., EMBRARAD LTDA Rua Agostino Togneri, 399 PO BOX: 04690-090 Jurubatuba Sao Paulo SP Brazil

CERTIFICAÇÃO ISO 9001

Validade do Processo Norma ISO 11137 e NE 552

CERTIFICAÇÃO FDA

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service

May 10, 2007

Food and Drug Administration 9200 Corporate Boulevard Rockville MD 20850

Dr. Rudolf U. Hutzler Director/President Embrarad-Empresa Brasileria De Radiacoes Ltda. Avenida Cruzada Bandeirante, 290 Cotia, Sao Paulo, Brazil

Dear Dr. Hutzler:

I am enclosing a copy of the establishment inspection report (EIR) for the inspection conducted at your premises as described above on March 21. 2007. This report is being provided to you for information purposes. This procedure is applicable to EIRs for inspections completed on or after April 1, 1997. For those inspections completed prior to the above date, a copy of the EIR may still be made available through the Freedom of Information Act (FOIA).

The Agency is working to make its regulatory process and activities more transparent to the regulated industry. Releasing this EIR to you is part of this effort. The copy being provided to you comprises the narrative portion of the report; it may reflect redactions made by the Agency in accordance with the FOIA and 21 C.F.R. Part 20.

This however, does not preclude you from requesting and, possibly, obtaining any additional information under

Let me know if I can be of further assistance. I can be reached at telephone number 240-276-0131 or fax 240-276-0134.

Sincerely yours.

Vertleen Covington Program Analyst

Field Operations Branch Division of Risk Management Operations Office of Compliance

Center for Devices and Radiological Health

Enclosure

Summary of Inspectional Findings

