ATMEA1 A NUCLEAR REACTOR DESIGNED TO WITHSTAND EXTREME EXTERNAL HAZARD SITUATIONS

Antoine VERDIER
ATMEA Business Development/Marketing Manager

Bernard BASTIDE
AREVA South-America
AGENDA

- A GLANCE ON ATMEA
- A GLANCE ON ATMEA1 REACTOR
- ATMEA1 REACTOR SAFETY FEATURES
ATMEA a Joint Venture between two world nuclear leaders

1 NUCLEAR ISLAND DESIGNED

2 WORLD LEADING NUCLEAR SUPPLIERS
1 JOINT VENTURE
Brief Overview of The Company

- Company name: ATMEA S.A.S.
- Office Location: Paris La Defense
- President & CEO: Philippe Namy
- Deputy CEO: Satoshi Utsumi
- Establishment: November 2007
- Capital: 126 Million Euros

- Scope of activities: Development, Marketing & Sales, Construction & Commissioning activities for the **1100 MWe** class Generation III+ ATMEA1 Nuclear Island

- The ATMEA company is the **exclusive vendor** of the ATMEA1 Nuclear Island

ATMEA1 Reactor: A mid-sized Generation III+ PWR
Strong support from 2 countries and 2 Nuclear Leaders

- Full support of 2 nuclear leading countries

Power plants under operation

= 113 Reactors under operation

- AREVA and MHI providing large nuclear engineering experience

= 130 PWR built
ATME'A’s achievements and current activities

- We are here today

Conceptual Design
- Definition of main features
- Project engineering manual
- Conceptual safety features

IAEA Report

Basic Design
- Functional requirements
- Safety requirements
- General arrangement
- Core system & component design
- Standard Preliminary Safety Analysis Report

ATME'A1 selection

- Jordan Project
- Standard Detailed Design

ASN* Review
- Conclusion of ASN Safety Options Review
- CNSC* (Canada) Review

Report expected

Final decision pending

Japan/ Turkey IGA for the 2nd Turkey NPP with 4 ATME'A1

*ASN: French Safety Authority *CNSC: Canadian Nuclear Safety Commission

June 2013
ATME1 Reactor selected in many countries as a potential technology for New Power Plant

- ATME1 in Canada
- ATME1 in Slovenia
- ATME1 in Argentina
- ATME1 in Brazil (Up to 6 Units)
- ATME1 in Turkey (4 Units)
- ATME1 in Jordan (1 or 2 Units)
- ATME1 in Hungary (2 Units)
- ATME1 in Vietnam (2 Units)

- Opportunities / Negotiations going on
- Japan driven business
AGENDA

- A GLANCE ON ATMEA
- A GLANCE ON ATME A1 REACTOR
- ATME A1 REACTOR SAFETY FEATURES
Compilation of Nuclear technology of MHI and AREVA

Integrated design based on proven technology

APWR

ATMEA1

Tomari 3

N4

EPR

KONVOI

An AREVA and MHI Company
June 2013
ATMEA1 Reactor main features

<table>
<thead>
<tr>
<th>Reactor Type</th>
<th>3-Loop PWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical output</td>
<td>1100 – 1150 MWe (Net)</td>
</tr>
<tr>
<td>Core</td>
<td>157 Fuel Assemblies</td>
</tr>
<tr>
<td>Steam Pressure</td>
<td>More than 7 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety System</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 train reliable active system with passive features + 1 diversified safety train</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severe Accident Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core catcher</td>
</tr>
<tr>
<td>Hydrogen re-combiners</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resists airplane crash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-stressed Concrete Containment Vessel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Digital</td>
</tr>
</tbody>
</table>

Reactor Building
- Reactor Building
- Fuel Building
- Safeguard Building
- Emergency Power Building
- Nuclear Auxiliary Building
- Turbine Building
ATMEA1 Reactor Main Features
Main Nuclear Island Buildings

- Pre-stressed Concrete Containment Vessel
- Safeguard building and Fuel building with thickened concrete wall
- Protection against large commercial airplane crash (APC) in compliance with US-NRC regulation and European practice
- Safety systems and components are protected:
 - Either by segregation or bunkerization to secure the required safety functions
 - Against Tsunami/Flooding in leak tight buildings

![Diagram of ATMEA1 Reactor Main Features](image)
Typical 3-loop configuration

- Design based on ASME Boiler and Pressure Vessel Code
- Experienced materials reflecting the latest experiences of AREVA and MHI
- Design applying the latest technologies of AREVA and MHI
AGENDA

- A GLANCE ON ATME A
- A GLANCE ON ATME A1 REACTOR
- ATME A1 REACTOR SAFETY FEATURES
Integrated design based on experienced technologies

Safety Design based on Existing and Proven Technology, with Increase of redundancy and diversity

Front System (SIS, CSS)

Cooling Chain (CCWS, ESWS)

Power Supply (EPS, AAC)

- SIS: Safety Injection System
- CSS: Containment Spray System
- IRWSP: In-containment Refueling Water Storage Pit
- CCWS: Component Cooling Water System
- ESWS: Essential Service Water System
- UHS: Ultimate Heat Sink
- EPS: Emergency Power Source
- AAC: Alternative AC power source
ATMEA1 robust design with its redundant and diversified safety features ensures best-in-class safety

Internal events - External hazards - Internal hazards

PROTECT: Robust design, reliable equipment and clearly separated safety trains

COOL DOWN: Ensure the residual heat removing function by redundant and diversified safety features

CONFINE: No/very limited environmental impact even under extreme conditions
Protection against Internal events – All hazards

- Clear divisional separation
 - Each safety train
 - Controlled area and non-controlled area
- All safety systems/equipment protected against external hazards
Protection against external hazards

Seismic design

- Thickened outer walls of buildings against seismic shear force
- Large rectangular basemat to improve seismic stability
- Functions of reactor and primary system, fuel pool, all safety systems to be kept against seismic events
Protection against external hazards

Tsunami and Flooding

- The ground level should be set to a level to avoid consequences from a Tsunami
- Important buildings are protected with water-tight walls and doors
 - Fuel building, Reactor building, Safeguard building
 - Emergency Power sources buildings, AAC building
 - Essential Service Water System route
- Electrical equipment and I&C equipment are located in upper floors

Important safety equipment (>ground level or water tight compartments)

Water tight wall, doors

Sea water pump

Main control room
Safety electrical boards
Protection against Air Plane Crash (APC)

Airplane Crash protection objectives

Ensures that:
- The reactor core remains cooled, the containment remains intact
- Spent fuel cooling and spent fuel pool integrity are maintained
- No-offsite countermeasures necessary

Airplane Crash protection features

ATMEA1 buildings are protected:
- By shielding (APC wall) : RB, FB, SAB
- By segregation : EPS buildings, AAC building
COOL DOWN and Support Systems
Diversified heat sinks and power sources

• 3 x 100% safety trains plus one additional safety train (Div X)
Each train has sufficient capacity for cooling Reactor core and Spent Fuel Pool

Emergency Power Source and Alternate AC: more than 7 days autonomy
Second Ultimate Heat Sink: more than 7 days autonomy

- Power supply
- Heat sink
- Cooling chain
- Consumers

Division X
• Diversification in cooling equipment, heat sinks and power source

Spent fuel (SF) cooling and makeup
• SF pool with diversified cooling chains and multiple make-up sources
CONFINE: Robust containment and enhanced confinement

Annulus
Sub-atmospheric and filtered to reduce radioisotope releases

Pre-stressed containment vessel with Steel Liner

In-Containment Refueling Water Storage Pit

All potential leakages are prevented or processed and filtered

Core-catcher
For long-term Severe Accident Mitigation
Extreme External Hazards response

- Highly unlikely extreme external events (e.g., extreme seismic events, external flooding, etc.) present challenges to nuclear power plants

- ATMEA1 design against extreme external hazards
 - Extend protection of necessary “permanently installed equipment” against extreme condition and use them
 - AAC, UHS2, Division-X
 - Mitigation of radiological consequences in case of a severe accident
- For each site, the design is defined considering:
 - Site plausible hazards
 - Site/country specific regulatory requirements, site specificities, emergency capabilities
Review of regulatory statements

ATMEA1 response to extreme external hazards follows latest international regulatory consensus

• **ASN (France)**: review of ATMEA1 safety options
Safety options of ATMEA1 demonstrate its **robustness to extreme events**

• **CNSC (Canada)**: For a new NPP design, as a countermeasure against such extreme events, it is expected the use of **installed equipment and resources** or passive design features to maintain or restore core cooling, containment cooling, and spent fuel cooling for a prolonged period of time (e.g. 72 hours)

• **MDEP Common position paper (Jan 2013)**
Most safety functions of NPPs depend on alternating current (AC) power, hence high reliability of AC power supply is essential. This high reliability is expected to be achieved through an adequate combination of redundancy and diversity. **Ensuring adequate protection of the AC power supply against rare and severe external hazards** is a lesson from the Fukushima Dai-ichi accident. Regarding emergency power supply, **diverse, electrically adequately isolated AC power sources** needs to be required as a part of defense-in-Depth concept of the plant.
The Defense-in-Depth approach needs to be applied also to the ultimate heat sink. The design of new nuclear power plants needs to provide diverse means to provide reactor and spent fuel cooling. **The use of a secondary ultimate cooling water system is an example of diverse means to provide reactor and spend fuel cooling for decay heat removal in case of unavailability of the primary ultimate heat sink.**
ATMEA’s Approach to First Lessons Learned from Fukushima

- Assessment results confirmed robustness of the current ATMEA1 design and its adequate grace time as similar Generation III+ evolutionary reactors
 - Resistance against external hazards
 - Design margin and absence of “cliff-edge” effect
 - Long-term containment integrity under severe accident conditions

- For now no need for design modifications in terms of safety options

First lessons learned from Fukushima have validated ATMEA1’s safety approach

- ATMEA will make a close follow-up of national and worldwide consensus regarding additional safety dispositions that could be raised in the wake of Fukushima accident
Benefits of ATMEA1

• Evolutionary Technology integrating PWR experience
 - Improved and verified through over **40 years and 130 units**
 - No revolutionary unproven technologies

• Excellence in Safety / Post-Fukushima
 - ATMEA1 already satisfying the Post-Fukushima requirements
THE ATMEA1 REACTOR
A TOP LEVEL EVOLUTIONARY GENERATION III + PWR REACTOR

THANK YOU