

Stability of vitamin E content of γ- irradiated biscuits

Magda S. TAIPINA, Leda C. A LAMARDO* Nélida L. Del MASTRO

Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, Brazil

*Instituto Adolfo Lutz, São Paulo, Brazil

INTRODUCTION

• α -tocopherol represents an essential component in human nutrition required for the :

 > preservation of lipids in stable form in biological systems and in foods [WAGNER et al, 2004]. • Vitamin E : the main antioxidant, together with:

- Vitamins A and C
- Copper, zinc and selenium
- Antioxidants in the diet: [WU et al., 2004]
- neutralize free radicals formed in the human body
 =>(process of oxidation)

reduce serum lipid peroxides

- A diet rich in antioxidants has an important role in the prevention of diseases related to oxidative stress.
- A diet rich in foods containing vitamin E may help to protect against: [NATIONAL INSTITUTES OF HEALTH,
 2002;FERREIRA, 2004; MAGUIRE, 2004].

Alzheimer's disease

✓ cancer

✓ coronary heart disease

Table 1. Sources of vit. E in the diet (US or Europe):

Products	Tocopherols,mg/100g			
	α	β	γ	δ
Oils				
Soybean	8	1.5	80	27
Corn(1)	11	5	60	1,8
Linseed	8	-	58	2
Cottonseed	39	-	39	-
Rapeseed(2)	32	-	38	2
Palm	26	-	32	7
Sesame	14	-	29	-
Wheat-germ	123	71	26	27
Peanut	13	-	21	2
Sunflower(2)	49	-	5	0,8
Olive(2)	12	-	0,7	-
Margarines				
Corn(1)	5	-	46	-
Soybean(1)	5	-	34	10
Sunflower(2)	6	-	10	3
Seeds				
Sesame	-	-	23	-
Sunflower	50	3	-	-
Nuts				
Almonds	45	19	-	
Pecan	-	-	16	-
Peanuts	11	-	8	-
Brazil	11	-	5	3
Cereal grains				
Corn	0,2	-	4,5	-
Rice, white	0,3	-	0,3	-
1 Preferred intake in the USA. 2 Preferred intake in Europe.				

WAGNER et al, 2004

• The possibility of using gamma irradiation doses (different foods and read-to-eat foods) to improve: [FAN, 2003]

the microbiological quality of different foods

 to be balanced with the maintenance of product quality

to preserve nutritional value and organoleptic quality

- Naturally occurring antioxidants are considered able to behave as radioprotectors [WIESS & LANDAUER, 2000].
- Radiation protecting properties of vitamin E has been described [KAMMERER et al, 2001;MANZI et al, 2003].
 - The effects of vitamin E on the formation of final products of radiation-induced free-radicals transformation has been shown [SHADYRO et al, 2005].

MATERIAL AND METHODS

Material

 Biscuits - commercially found in the market in 200g pouches, containing the following ingredients:

✓ whole grain wheat flour

✓raw sugar

✓ soy lecithin

✓ sunflower

✓ flavoring

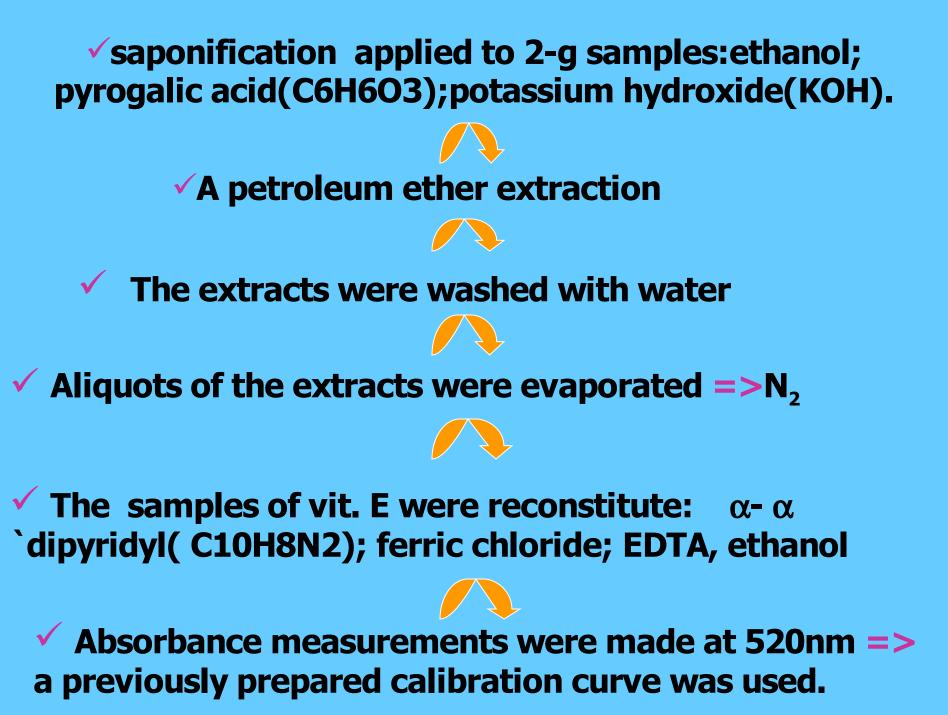
✓maize oil

✓ citric acid

wheat flour enriched:

> => iron and folic acid, maize starch, honey, barley malt, cinnamon, carnation powder, salt, chemical baking substances (sodium bicarbonate, ammonium bicarbonate and sodium acid pyrophosphate)

• Three different lots of biscuits were used, kept at a freezer overnight before irradiation.


IRRADIATION

 Irradiation was performed in a ⁶⁰Co Gammacell 220(AECL) source, dose rate about 3.5kGy/h at doses of 1kGy and 3kGy.

• Dosimetric mappping was previously performed by Fricke dosimetry.

VITAMIN E AND MEASUREMENTS

• The method employed [IAL, 2005] consists of:

RESULTS AND DISCUSSION

Table2. Vitamin E content of irradiated biscuits, means (X) and standard deviations (sd), and % of retention

1st lot

Vitamin E (mg/100g)			
Sample	1kGy	0kGy	Retention (%)
1	11,38	10,25	
2	12,33	11,48	
3	11,83	10,95	
Х	11,84	10,89	108,72
sd	0,48	0,61	

1st lot

Vitamin E (mg/100 g)			
Sample	3kGy	0kGy	Retention (%)
1	10,45	10,25	
2	10,98	11,48	
3	11,35	10,95	
Х	10,93	10,89	100,31
sd	0,45	0,61	

2nd			
lot Vitamin E (mg/100 g)			
Sample	1kGy	0kGy	Retention (%)
1	8,88	8,80	
2	8,80	8,78	
3	9,65	9,43	
Х	9,11	9,00	101,20
sd	0,47	0,37	

2nd lot

Vitamin E (mg/100 g)			
Sample	3kGy	0kGy	Retention (%)
1	8,80	8,80	
2	8,78	8,78	
3	9,45	9,43	
X	9,01	9,00	100,09
sd	0,38	0,37	

3rd lot

Vitamin E (mg/100 g)			
Sample	1kGy	0kGy	Retention (%)
			(70)
1	7,40	7,40	
2	7,93	7,93	
3	9,13	9,15	
X	8,15	8.16	99,90
sd	0,88	0,90	

3rd lot

Vitamin E (mg/100 g)			
Sample	3kGy	0kGy	Retention (%)
1	7,38	7,40	
2	8,13	7,93	
3	9,15	9,15	
Х	8,22	8,16	100,72
sd	0,89	0,90	

DISCUSSION

- Diverse authors studied radiation effects on vitamin E containing foods. They found different results depending the system assayed, the water activity and the radiation conditions.
- •Vitamin E is known as the most radiation-sensitive of the fat-soluble vitamins. [KILCAST, 1992]
- The main sources of this vitamin are: oils; dairy products, none of which suitable for irradiation
 Because of their sensitivity to off-flavor
- •Some radiation effects on foods could be of no nutritional relevance

• BAGOROGOZA, 2001, studied fresh skinless turkey breasts packaged in air or nitrogen gas irradiated at:

 \checkmark => 2.4 to 2.9 kGy or not and stored at 2° C.

•Samples of raw and cooked turkey were evaluated by a descriptive panel:

✓ Irradiation affected color, odor, flavor, and levels of vit.E levels by 33%

DIEHL, 1990, described that the treatment of minced pork:

- ✓=> a dose of 50kGy in the presence of air at ambient temperature destroyed vit. E completely
- ✓ When irradiation was carried out at 0°C the loss was 75%, and at - 30°C it was 55%

SINGH, 1991 found

•no significant difference between vitamin E degradation in air and in nitrogen at dose rates between 1 kGy e 100kGy.

•No significant differences were observed in atocopherol loss from the irradiation of sunflower oil at total dose of 1kGy • Irradiating vit.E in air at different doses produced a loss of vit E activity:

kGy	% (vit E) loss
10	51
50	78
100	95

The loss of vit. E in oatmeal increased as the irradiation=> 1 T°C from:

✓ 7% => at 18°C to

✓46% => 50°C

• THAYER et al., 1991 found that the vitamin E content of:

• wheat decreased by irradiation at ambient temperature in the presence of air.

 Oats that were packaged, irradiated at 1 kGy, and stored for 8 months under nitrogen lost only 5% of their tocopherol content compared with a 56% loss in oats irradiated and stored in air.


 hazel nuts at 1 kGy produced an 18% loss of αtocopherol, while baking produced a 13% loss

CONCLUSION

•From the obtained results it is possible to conclude that:

✓ there was a notorious stability of the vitamin content of the biscuits submitted to γ -irradiation at the assayed doses.

✓A sensory analysis will be required in order to recommend the application of the radiation technique for microbiological assurance to this kind of vit. E containing product.

Spectrofophotometer u.v-visible (Hewlett Packard)

Samples of irradiated biscuits in the 60 Co (Gammacell 220-AECL)

thank you

magtaipina@ig.com.br