

LASIANS 2010 Symposium

New Technology for the Nuclear Fuel Cycle

DEVELOPMENT AND IMPLEMENTATION OF A 16x16 NEXT GENERATION FUEL (16NGF) FOR WESTINGHOUSE 16x16 TWO LOOP CORES (ANGRA-1 AND KORI-2)

Authors

Marcio Adriano C. Silva 🛛 🔊 🛛 🖉 🗤 🛙 🗤 🖉

KIM, Yong Hwan

IN BINDÚSTRIAS NUCLEARES DO BRASIL DO BRASIL

24/06/2010

Ministério da Ciência e Tecnologia

≻16NGF Development Background

≻16NGF Design Objectives and Characteristics

≻16NGF Lead Tests Assemblies (LTA) and Full Region Implementation

➢Conclusion

≻2001

 INB, KNF and Westinghouse have jointly decided to design an advanced 16x16 Westinghouse type PWR fuel assembly

≻2002 to 2004

Fuel Assembly design and tests phases
2002 → Preliminary design
2003 to 2004 → Final design and physical tests

≻2005 to 2007

Angra-1 Safety Analysis (16NGF, RSG and Uprating)
INB, Eletronuclear (ETN) and Westinghouse

16NGF Design Objectives and Characteristics

≻16NGF Program Major Objectives

- Update the current 16x16 Standard (16STD) fuel assembly utilized at the Angra-1 and Kori-2 sites making it compatible with current Westinghouse technology
 - Batch average burnup greater than 55 MWd/kgU
 - More than 20% increase in DNB Margin
 - Mid Grid dynamic strength and dynamic stiffness sufficient to meet LOCA/Seismic design criteria.
 - Demonstration of compatibility between the 16NGF and the existing 16STD fuel assemblies in use in the Republic of Korea and Brazil.

16NGF Design Objectives and Characteristics

≻16NGF Main Characteristics

Item	Previous \ [\] STD	NGF	Enhancement/Benefit	
Fuel Rod		ZIRLO [®] Clad Optimized	High Burnup	
	Zirc-٤	Rod Dia. Axial Blanket	(>∀• GWD/MTU)	
		(Opt.)	Neutron Economy	
Mid & IFM Grid		ZIRLO [®] Mid Grid	Neutron Economy	
	Inconel Mid Grid	New Spring/Dimple	Fretting Wear	
	No IFMs	Optimized Mixing Vane	Resistance	
		Enhanced IFMs	DNB Margin(>۲۰%)	
Guide	Zirc- [£] Swaged	ZIRLO®	Robust & IRI Free	
Thimble	Dashpot	Tube-in-Tube		
Тор	Welded	Modified ICTN	Spring Screw Failure	
Nozzle	to Skeleton	with RTN	Free Reconstitutible	
Bottom	DEDN/Stondard	DEDNI	Debris Filtering	
Nozzle	DFDN/Stalluaru	DFBN		
Protective	Nono	Protostivo Crid		
Grid		FIOICEUVE OND		
End Plug	STD End Plug	Long Solid End Plug		

16NGF Design Objectives and Characteristics

≻16NGF LTAs Implementation

- Four LTAs in both utilities (Angra-1 and Kori-2)
- LTAs fuels are to be burned for three consecutive cycles
- LTAs fuels are supposed to be examined after each cycle (PSE - Pool Side Examination)

≻16NGF LTAs Pool Side Examination

- Visual inspection
- Fuel assembly axial growth
- Fuel assembly bowing
- Fuel assembly twist
- Fuel rod axial growth

- Fuel rod Bowing
- Fuel rod diameter
- Fuel rod corrosion layer thickness
- Grid width growth
- Holddown spring force and rate

≻16NGF LTAs Angra-1 Implementation

 INB and ETN (Angra-1 utility) has decided to take advantage of the new fuel design just after replacing Angra-1 Steam Generators (concluded in 2008)

≻16NGF Implementation Strategy for Angra-1 NPP

	Cycle	Year	LTA	NGF	STD	STD/Zirlo	106%
RSG							
	16	2009	-	-	81	40	No
Campaign	17	2010	4	-	37	80	No
	18	2011	4	I.	-	117	Yes
	19	2012	4	-	-	117	Yes
	20	2013	1	40	-	80	Yes
	21	2014	-	80	-	41	Yes
	22	2015	-	121	-	-	Yes

≻16NGF Implementation Strategy for Angra-1 NPP

- INB investments to fabricate 16NGF fuels
 - New dies to produce UO₂ pellets
- Design and qualification of a semi-automatic 16NGF skeleton fabrication bench
- Qualification of an internal Gadolinium pellets supplier (CTMSP)

New line to Gadolinium FR fabrication

≻16NGF LTAs Kori-2 Implementation

 KNF and Kori-2 (utility) have chosen insert the 16NGF LTAs fuels immediately after design phase had been finalized (2005)

➤16NGF Implementation Strategy for Kori-2 NPP

	Cycle	Year	LTA	NGF	STD	STD/Zirlo	106%
	20	2005	4	-	117	-	No
	21	2006	4	-	117	-	No
	22	2007	4	-	117	-	No
	23	2008	-	48	73	-	No
	24	2009	-	96	25	-	No
FMO [*]	25	2010	-	121	-	-	No
/	26	2011	-	121	-	-	No

* Fuel Management Optimization \rightarrow 56 fuels (492 EFPD)

Conclusion

➢INB and KNF have been adopting different 16NGF implementation strategies that better meets their requirements, objectives and needs

➤Taking account PSE results so far, 16NGF fuel assemblies have been showing an excellent operational performance.

