La actividad Nuclear

Una visión estratégica basada en un análisis sistémico de su problemática.

La contaminación en Ezeiza

- Todas las evaluaciones han concluido que no hay contaminación radiactiva y se cumple con la normativa Nacional e Internacional vigente en la materia
- Siendo el agua potable de la zona radiológicamente apta para el consumo humano

POR LO QUE NO QUEDA DUDA CIENTIFICA

Los procesos de decisión.

Lógica	Objeto de análisis	Mecanismo para interactuar	Conocimiento Deseado	Finalidad
Estratégica	La cultura	La Comunicación	Los valores y la Ideología	Entender la los hombres
Táctica	Los hechos	El lenguaje natural	Recopilación histórica de los hechos. La heurística	Entender cómo funcionan las cosas.
Científica	El raciocinio	Los algoritmos	La relación causa y efecto. La ciencia	Entender por qué funcionan las cosas.

Industria – Problema de la actividad nuclear

Problema Industria	Acción malévola	Contamina Ambiente.	Destrucción Masiva.
Eléctrica.	SI	SI	Si
Médica.	Si	SI	NO
Militar (Armas Nucleares)	SI	SI	SI

Acciones

Estrategia	Security	Safety	Salvag.	Intereses
Conflicto	Reactores	Instalación Nuclear.	Reactor	Industria Eléctrica
Política	Transport e	Ciclo de Combustible	Reprocesa r	Grupos Ecológicos
Comunicació n	Fuentes Huérfanas	Residuos Radiactivos	Enriquecer	Política Internaciona

Arsenal Nuclear

http://www.cdi.org/nuclear/database/nukestab.html

Países	Estratégicas	Tácticas	Totales
China	20	390	410
Francia	384	80	464
India	0	60	60
Israel	0	200	200
Pakistán	15 – 25	0	15-25
Rusia	~6.000	4.000	10.000
Reino Unido	185	0	185
United States	7.200	3.300	10.500

Arsenal Nuclear: Estados Unidos

Land-Based Strategic Weapons

Minuteman III ICBM

Peacekeeper (MX) ICBM

Sea-Based Strategic Weapons

Ohio-class (Trident) SSBN

Trident I C-4 SLBM

Trident II D-5 SLBM

Arsenal Nuclear: Estados Unidos

http://www.cdi.org/nuclear/database/usnukes.html#mmiii

```
    Air-Based Strategic Weapons
```

B-52H Stratofortress

B-1B Lancer

B-2A Spirit

ALCM

ACM

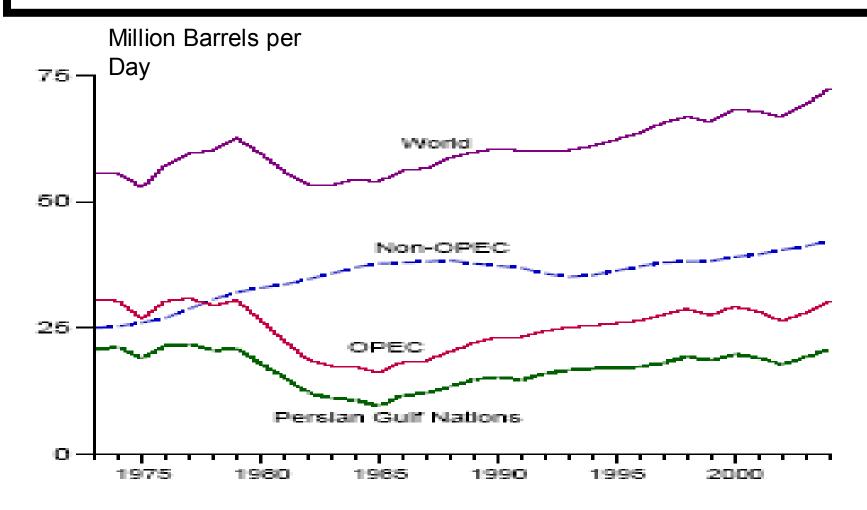
B53 Gravity Bomb

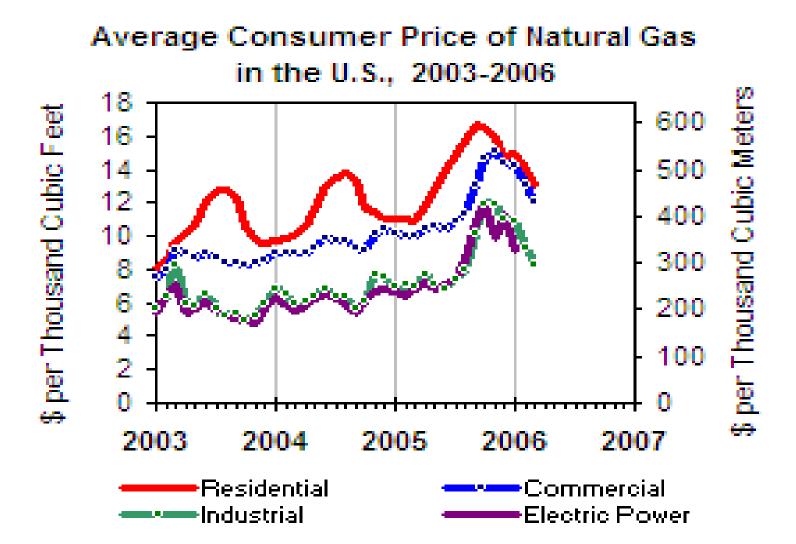
B61 Gravity Bomb (Strategic)

B83 Gravity Bomb

Non-Strategic Nuclear Weapons

Tomahawk TLAM-N SLCM


B61 Gravity Bomb (Tactical)


Energy by Energy Type			
World Total		Prod.	U\$S
Petroleum (Thousand Barr. per day)	200	80.099	2 1012
Dry Natural Gas (Tn Cubic Feet)	90	95	9 1011
Coal (Mn Short Tons)	30	5.400	3 1011
Hydroelectric Power (Mn Mwh)	8	2.600	8 10 ¹⁰
Nuclear Electric Power (Mn Mwh)	8	2.500	8 1010
Thermal Electrical Power (Mn Mwh)	30	9.900	3 1011
Geothermal, Solar, Wind, Wood, Waste Electric Power (Mn Mwh)	1	300.1	1 10 ¹⁰

World Consumption of Primary

World Crude Oil Production, 1973-2004

(http://www.eia.doe.gov/emeu/international/contents.html)



FODA.

Amenazas	Oportunidades	Fortalezas	Debilidades
Terrorismo Nuclear	Calentamiento Global.	Seguridad en operacione	Impacto Ambiental
Energías Alternativas	Polución	Tecnología con usos Múltiples	lmagen Deteriorada
Grupos Ecologistas	Incremento de la Demanda.	Eficiencia Económica	Tecnología con aplicación Militar

Debilidades

Impacto ambiental

Imagen deteriorada

Tecnología Militar

Calentamiento

Polución.

Terrorismo

Energías alternativas,

Grupos ecológicos.

Seguridad

De Treambeogía.

Eficiencia

Fortalezas

