

Design Challenges in Cooling Water Systems & Plant Layout at New Nuclear Power Plants

Presented by: Nandu B Patankar, URS

June 24, 2010

Design Challenges in Cooling Water Systems & Plant Layout – New Nuclear Power Plants

- New Nuclear Technologies
- Advanced Boiling Water Reactor (ABWR)
- Evolutionary Power Reactors (EPR)
- Advanced Passive 1000 (AP1000)
- Economically Simplified Boiling Water Reactor (ESBWR)
- US Advanced Pressurized Water Reactor (US APWR)

Requirements

- Technical (Ref. Design Control Document)
- State & local regulations
- Site environmental requirements
- Existing site conditions
- Cooling Water Systems
- Circulating Water System
- Essential Service Water System (Ultimate Heat Sink)

Plant Layout

Design Challenges in Cooling Water Systems – New Nuclear Power Plants

Cooling Water Systems

TYPE OF TECHNOLOGY	CIRCULATING WATER SYSTEM (NON SAFETY SYSTEM)	SERVICE WATER SYSTEM / ULTIMATE HEAT SINK (SAFETY SYSTEM)
ABWR	•MULTIPRESSURE CONDENSER	SPRAY POND OR COOLING TOWERS
	·COOLING TOWER OR RESERVOIR	• PUMPS, PIPING, VALVES
	•PUMPS, PIPING, VALVES	OPEN LOOP OR CLOSED LOOP COOLING
	•OPEN LOOP OR CLOSED LOOP COOLING SYSTEM	SYSTEM
EPR	•MULTIPRESSURE CONDENSER	COOLING TOWERS
	•COOLING TOWER	• PUMPS, PIPING, VALVES
	•PUMPS, PIPING, VALVES	·CLOSED LOOP COOLING SYSTEM
	·CLOSED LOOP COOLING	
US-APWR	·SINGLE OR MULTI PRESSURE CONDENSER	·COOLING TOWERS
	·COOLING TOWER	• PUMPS, PIPING, VALVES
	•PUMPS, PIPING, VALVES	·CLOSED LOOP COOLING SYSTEM
	·CLOSED LOOP COOLING	
AP1000 &	•MULTIPRESSURE CONDENSER	NOT APPLICABLE (PASSIVE DESIGN)
ESBWR		
	•PUMPS, PIPING, VALVES	
	CLOSED LOOP COOLING	
Pow er		

Copyright 2010 URS

ONFIDENTIAL – This document is proprietary and competitively sensitive. Any disclosure, copying, or use of it is strictly prohibited.

Design Challenges in Cooling Water Systems – New Nuclear Power Plants

- UNIQUE REGULATORY DIFFERENCES BETWEEN US & OTHER COUNTRIES
- US DESIGN
- ✓ US CLEAN WATER ACT PRECLUDES THE DESIGN OF "ONCE-THROUGH COOLING WATER SYSTEM" FOR COOLING WATER SYSTEMS
- THIS IS MAINLY TO PROTECT AQUATIC LIFE & REGULATE THE DESIGN OF COOLING WATER SYSTEM
- ✓ RULE 316(b) INTAKE STRUCTURE REQUIREMENTS
- ✓ MAKING THE DESIGNS VERY COSTLY

DESIGN IN OTHER PARTS OF THE WORLD

- ✓ ABOVE REGULATION IS <u>NOT</u> APPLICABLE
- "ONCE-THROUGH COOLING WATER SYSTEM" SHOULD BE APPLIED, AS APPROPRIATE

Design Challenges in Cooling Water Systems

- DESIGN & LICENSING BASIS
- LOCATION & ORIENTATION
- WATER TEMPERATURES & DISCHARGE LIMITS
- > APPROACH TEMPERATURE
- CYCLES OF CONCENTRATION
- METEOROLOGICAL DATA
 ✓WET BULB TEMPERATURE
 ✓WIND

Design Challenges / Considerations in Site Plant Layout

- Orientation of the Turbine Island with respect to the water source for Open / Closed Loop Cooling, Cooling Tower, Pond or Reservoir arrangement for CWS
- Location of the Turbine Building (Generator end) to be in close proximity to the switchyard
- Location of the plant switchyard in relation to existing transmission lines and potential transmission interconnection points
- Minimum spacing between units for a two-unit power plant (distance between reactor vessel center line to center line)
- Construction Plot Plan: Location of crane, lay down space, concrete batch plant, modular fabrication, construction offices, potential borrow areas, spoils area, construction access road, parking, etc.
- Establishing site flooding & drainage maps (including site topography)
- Establishing site grade to minimize site cut and fill
- Assessing the plant rock quality and depth (conduct sufficient boring)

Design Challenges / Considerations in Site Plant Layout (Cont'd)

- Identifying any existing below grade structures and/or utilities (water, sewerage, power lines) that could potentially impact plant layout
- Identify overhead limitation—transmission lines and right of way
- Identify plant access roadways during construction phase and when the plant is operating
- Identify supporting structures such as administration building, security building, maintenance building, warehouses, training center, etc.
- Identify security requirements during construction especially if at a site with an operating unit.
- Recommendation is to prepare two site layouts: Design Layout & Construction Layout

Design Challenges in Cooling Water Systems & Plant Layout – New Nuclear Power Plants

SUMMARY

- EACH OF THE NEW NUCLEAR PLANT TECHNOLOGIES HAVE UNIQUE TECHNICAL REQUIRMENTS FOR COOLING WATER SYSTEMS (Ref: DCD & COMBINED OPERATING LICENSE APPLICATION)
- PLANT LAYOUT HAS MANY DESIGN & CONSTRUCTION CONSIDERATIONS THAT SHOULD BE CAREFULLY EVALUATED, ESPECIALLY AT EXISTING NUCLEAR SITES
- ENVIRONMENTAL & STATE / LOCAL REGULATIONS SHOULD BE ADDRESSED DEPENDING ON THE COUNTRY WHERE THE NEW NUCLEAR PLANT WILL BE BUILT

