Boiling Water Reactor (BWR) Technology ABWR/ESBWR

June 28, 2013

Isidro de la Fuente Vice President, Sales Nuclear Plant Projects

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

GE Hitachi Nuclear Alliance – Wilmington

- In alliance with Hitachi the only U.S. controlled OEM today
- HQ Wilmington, NC (1650 acres)
- ~6000+ employees worldwide (GEH/HGNE)
- \bullet BWR pioneer 2 in India, 35 in the USA, 30 in Japan \dots 94 globally
- Continuous investments in technology over past 50 years

..advanced generational technology solutions

ABWR – Gen III
ESBWR – Gen III+
PRISM – Gen IV

..backed by experience, expertise & innovation

- Nuclear, Turbine islands, balance of plant
- Life extension
- Power uprates
- Performance services
 Outeree Inspections
- Outages, Inspections
- Spent fuel storage

..expanding competencies and build upon adjacencies

- BWR, mixed oxide fuel
- Candu fuel & handling
- Fuel engineering svcs
- Laser enrichment
- Advanced Recycling
- Nuclear isotopes

94 BWRs in Asia, Europe, and Americas

constructing nuclear plants for over 50 years

Recent experience and project

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

PWRs and BWRs – the basics

Typical Pressurized Water Reactor

Typical Boiling Water Reactor

Basic Principles of Steam

<u>BWR</u>

- Direct Cycle (Single Cycle)
- RPV Pressure ~70 Bar (1020 psig)
- RPV Temperature 288 °C (550 °F)
- Steam Generated in RPV (with Separator & Dryer)
- Bulk Boiling Allowed in RPV
- Pure Water H₂O

<u>PWR</u>

Indirect Cycle (Dual Cycle) RPV Pressure ~155 Bar (2240 psig) RPV Temperature 326 °C (619 °F) Steam Generated in Steam Generator (via Second Loop) No Bulk Boiling in RPV

Water + Boric Acid

BWR Has Lower RPV Pressure and Simplified Steam

Reactor Evolutions

BWR Simplification = Fewer Major Components

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

Simplification of design

- RPV (with Dryer & Separator)
- No Steam Generator
- No Pressurizer
- RPV mounted pumps (ABWR)
- Natural Circulation (ESBWR)
- Bottom Entry Control Rod Drives
- No piping (ABWR/ESBWR)

RPV

- 2 -4 Steam Generators
- 1 Pressurizer
- Rx Coolant pumps outside of RPV

Top Entry Control Rod Clusters Interconnecting piping

Consider the complexity of the PWR

Compare PWR to ABWR

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

Evolution to ESBWR

Consider the PWR Vessel Head

Vessel Head • Boric acid

- erosion... from boron used for power control
- This was a significant safety issue
- Davis Besse shut down 2002-2004 with a total

cost of \$600MIMI+

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

Consider the PWR ... Steam Generator

Rep

HITACHI

Steam Generator Replacement (SGR)

- Tube leaks due to corrosion and mechanical wear...alloy 600
- \$250 \$300 MM to replace
- 3+ month outages with additional dose of 0.8-2.5 Sv (80-250 rem)
- · Access holes created in containment
- Significant rad waste components
- May be necessary more than once in reactor lifetime

Steam Generators

ABWR Control Room

ESBWR Control Room

Confidence for investors and regulators

HITACHI

Detailed engineering before on-site work

ABWR modularization – proven in Japan

ESBWR modularization – based on ABWR

HITACHI

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

Predictability

1st of a Kind Advanced technology plant built on a 38-month construction schedule

Efficient, repeatable model:

RI : Rock Inspection BC : Start of Basemat Construction FL : Fuel Loading CO : Commercial Operation

Copyright 2013 GE Hitachi Nuclear Energy International - All rights reserved

Simplicity

Fuel performance imperative to plant performance

Record runs for light water reactors

Plant Name	Туре	Days of Continuous	Date ended
		Operation	
LaSalle 1	BWR - GE	739	Feb-06
Susquehanna 2	BWR - GE	722	Apr-09
LaSalle 2	BWR - GE	711	Feb-07
Peach Bottom-3	BWR - GE	707.7	Sep-05
Brunswick 1	BWR - GE	707.2	Mar-02
Peach Bottom-3	BWR - GE	706	Sep-07
Three Mile Island 1	PWR - B&W	705	Oct-09
Calvert Cliff 2	PWR - CE	692.2	Feb-09
Three Mile Island 1	PWR - B&W	689	Oct-05
LaSalle 1	BWR - GE	687	Feb-08
Three Mile Island 1	PWR - B&W	680	Oct-03
Indian Point 3	PWR - W	678	Mar-09
Susquehanna 2	BWR - GE	677	Feb-05
Browns Ferry 3	BWR - GE	669.4	Mar-02
Three Mile Island 1	PWR - B&W	668	Sep-99
Monticello	BWR - GE	627	Dec-07
Three Mile Island 1	PWR - B&W	616	1997
Indian Point 2	PWR - W	616	Dec-05
Davis-Besse	PWR - B&W	593	Jan-02
Millstone 3	PWR - W	585	Feb-01

- GE BWRs represent 10 out of the top 20 longest running reactors
- The top six are GE BWRs
- GE BWRs represented 5 • independent utilities

BWR Operational Cost Advantages

HITACHI

- No steam generator replacement(s)
 \$250-300MM, potential for up to \$2.8B (Crystal River PWR)
- No vessel head replacement
 - ~**\$32MM**, potential for up to \$600MM (David Besse PWR)
- No Reactor Coolant pump to operate 0.5% MWe output savings (ESBWR)
 \$100MM in lost revenue over 60 years
- ~50 less personnel per BWR unit>\$400MM over 60 years
- Six additional months of revenue on avg.\$180MM over 60 years
- ~8 fewer reloads over 60 years

BWR savings estimated to be more

ABWR

- Best in-class CDF
- The only advanced technology in operation today
- Licensed in 3 countries
- 4 ABWRs in operation today
- 4 ABWRs under construction
- 1st of a kind plant built in 38 months with repeated success
- Less equipment, piping, etc. than similar sized PWRs

- <image>
- Industry's lowest CDF
- Passive safety and natural circulation design
- Cooling for >7 days without AC power or human action
- Lowest projected operations & maintenance and staffing costs
- 25% fewer pumps, valves, and motors than active safety nuclear plants
- Completing NRC certification

Lowest core damage frequencies (industry standard for plant safety) of any Generation III or III+ reactors

Typical Two Unit Site

ABWR 3D Cutaway

Photo.2 Fit up of Shell and Bottom Head

ABWR Reactor Recirculation System

- Forced circulation of coolant through core allows for higher heat transfer
- Adjustable speed pumps also control flowrate through core to change reactor power (voids)

ABWR Key Design Features – Onsite AC Power

ESBWR passive safety systems

Isolation Condenser System

- Fully passive only requires gravity to function and starts automatically (fails in-service if DC power is lost)
- 4 separate systems housed in reinforced concrete vaults
- Limits reactor pressure (no Safety Relief Valve lifts)
- Steam rises from reactor to the tubes in the condenser pool then gravity pulls the condensed water back into the reactor

Responses needed to maintain core cooling

References: AP1000: US DCD rev. 18 Section 8.5.2.1, EPR: US DCD Rev. 1 Section 8.4

BWR Evolution is Natural

